
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

GPU Computing for Real-Time Optical
Measurement Techniques
Suren Chilingaryan, Sven Bundschuh, Chris Eberl, Andreas Kopmann

Karlsruhe Institute of Technology

Digital Image Correlation and Tracking
The accurate measurement of displacement and strains during deformation of
advanced materials and devices continues to be a primary challenge to
designers and experimental mechanicians. The increasing complexity of
technological devices with stringent space requirements leads to imperfect
boundary conditions that have to be properly accounted for. The push toward
miniaturizing devices down to nanometer length scales imparts additional
difficulties in measuring strains as the application of conventional
extensometers and resistance foil gages are cumbersome, damaging, or even
impossible. A technique which can cover all that and also can deal with
complicated strain fields in structures or structural materials is the Digital
Image Correlation. With this technique, strain can be calculated from a series
of consecutive images with sub pixel resolution. However, the image
processing is computation intensive and using general purpose processors it is
not possible to analyze images in real time. With hundreds of simple
processors used to transform vertexes in 3D space modern graphic adapters
offer a way to speed up the process of more than one order of magnitude at
low cost and with good scalability. To use this computational power we have
implemented the image tracking algorithm using CUDA.

Algorithm & Implementation

Measurement Setup

The correlation algorithm is based on the tracking of the grey value
patterns in small local neighborhood facets, typically having a size of
30x30 pixels. A set of markers (control points) is defined upon the first
image. For each marker, the cross-correlation is computed between the
facets of the first, template, and current images. Then, the marker is
moved to the location corresponding to the maximum of the correlation.
For better precision it is possible to locate the maximum correlation
coefficient with the sub-pixel precision using polynomial interpolation.
Monitoring the adjustments of the dense enough grid of markers, it is
possible to trace formation of cracks, measure deformations and strains
in materials, etc.
The original implementation uses Matlab Image Processing Toolbox. The
cpcorr function is used to tune marker location using normalized cross-
correlation. The cpcorr calls normxcorr2 function to compute correlation
and findpeak function to find it's maximum. Unfortunately, Matlab
implementation is slow. Therefore, using MEX interface we have
developed GPU-assisted implementation of cpcorr function. To further
increase performance, our implementation supports preloading of
images. While the GPUs are computing adjustments of markers, the next
image is loaded and preprocessed. In addition to Matlab application, we
provide a C library which can be used with 3rd party applications and a
console utility.

Performance Evaluation

Optimization Steps

Series of micrographs showing details
of the microstructural changes. The

average line width is 1.1 μm.

Displacements of 5000 control points
in Al-Mo Thin Film measured using

digital image correlation

A high precision camera is mounted to the
microscope with x40 magnification rate

resulting in approximately 8 pixels per micron
resolution.

The images are readout with a LabVIEW
application and processed in real-time

using NVIDIA GTX295 cards.

The GPU assisted MATLab application visualizes deformation of the sample in
real-time and can be used to analyze the stored results later.

CPU Intel Core i7-980-X Extreme Edition (6 cores, 3.33 Ghz, 12 MB Cache)

GPU 2 x NVIDIA GeFoforce GTX 295

Motherboard ASUS Rampage III Extreme (Intel X58, 4 PCIe x16 slots, SATA-600)

Memory 12GB DDR3 PC1333

HDD WDC5000AACS

SSD 2 x Intel X25-E as Raid-0

Software OpenSuSe 11.2, MATLAB 2009b, CUDA 3.0, CUDPP 1.1.1

Data 520 TIFF Images (2208x3000, 24bit), 2736 markers, 30x30 facet

CPU/6 cores

GPU/1 core

GPU/4 cores

GPU + SSD

0 5 10 15 20 25 30 35 40

I/O and Calculations Calculations only 1000 markers per second

37x

9x

9x
12x

35x

35x

1x
1x

Original: Original Version

Optimized: The template image is
preprocessed and cached. This
eliminates half of the image reads and
direct FFT transforms

FFT plugin. NVIDIA Matlab plugin is
used to compute FFT transforms

Cross-correlations in GPU: The
preprocessed data is cached in the
GPU memory; results are not
transfered in between of direct and
inverse transforms forth and back

Marker tracking in GPU:
CUDAfication of postprocessing code:
only the new coordinates of control
points are transfered back to system
memory

TIFF: The images are loaded with libtiff
and converted to the greyscale using
SSSE3 instructions

SSD: The faster storage media is used

0 100 200 300 400 500 600 700 800

60

61

61

60

528

0

0

13

13

13

171

731

0

0

15

17

251

1369

2745

5182

8285

32

157

219

219

219

219

244

GPU Time Transfer Time CPU Time I/O Time
μs per marker

1.0

1.5

2.0

 4.6

16

34

70

Speed-up*

* The time measurements was performed
using older computer equipped with a
single GTX280 graphic card. Image
preloading was not used.

Original version: http://www.mathworks.com/matlabcentral/fileexchange/12413
Optimized GPU version: http://dside.dyndns.org/dict

Project Pages:
(open source)

The chart compares performances of original and CUDA-optimized versions using three different subsets of
available resources. The computation and loading of images are performed in parallel and already using a single
GPU adapter, the performance is bound by the I/O time only. Usage of fast SSD media, especially organized in
Raid-0, allows to further increase performance. With 2 GTX 295, 4 cores, the GPU version is 37 times faster if
compared with original CPU implementation (all 6 CPU cores are actually used by the software). The
performance is GPU-bound in this case, about half of all time is spent computing FFT transforms. Therefore,
installing two more cards in free PCIe slots will further increase throughput.

Evaluation of NVIDIA Hardware

Core i7 980

GTX 280

Tesla C1060

GTX480

GTX295

Tesla S1060

0 10 20 30 40 50 60

Data processing 1000 markers per second

34x
16x

10x
8x
8x

1x

The chart compares performance of NVIDIA cards available on the market according to our implementation.
Only the speed of the cpcorr function is measured. The image loading and preprocessing as well as few other
operations performed always using CPU do not contribute to the numbers presented on this chart. For fairness
sake the optimized version is used to get Core i7 performance (about 30% faster compared to original version).

GPU/1c
GPU/4c

GPU+SSD

0

20

40

60

80

100

120

140

160

Calc. Cal+IO I/O

μ
s

p
er

 m
ar

ke
r

http://www.mathworks.com/matlabcentral/fileexchange/12413
http://dside.dyndns.org/dict

	Überschrift – Thema, Arial 80 pt fett schwarz oder KIT-Grün

