
High-Level Design for FPGA-based Multiprocessor Accelerators

Diana Göhringer1, Matthias Birk2, Michael Hübner2 , Jürgen Becker2

1Fraunhofer-Institute for Optronics, System Technologies and Image Exploitation IOSB, Germany
2Karlsruhe Institute of Technology (KIT), Germany,

diana.goehringer@iosb.fraunhofer.de, {matthias.birk, michael.huebner, becker}@kit.edu

2. Design Methodology for FPGA-based Multiprocessor Accelerators

1. Introduction: FPGA versus GPU Programming

3. Application Exploration 4. Results

5. References
(1) D. Göhringer, M. Hübner, J. Becker, “Adaptive Multiprocessor System-on-Chip Architecture: New Degrees of Freedom in System Design and Runtime Support,” in Multiprocessor System-on-Chip: Hardware Design

and Tool Integration, M. Hübner and J. Becker, Ed. Springer, 2010, pp.125-149.

(2) H. Gemmeke, N.V. Ruiter, “3D ultrasound computer tomography for medical imaging,” Nuclear Instruments and Methods in Physics Research Section A, vol. 580, no. 2, pp.1057-1065, 2007.

Results:

• Partitioned application

including an application task
graph

• Full and partial FPGA
configuration bitstreams

• software executables

Key

X
il
in

x

E
D

K

Profiling

C/C++ Application

with/without MPI

Profiling

Communication Analysis

Task

Allocation SW / SW Partitioning

HW / SW Partitioning

SW code

C-to-FPGA
Compiler

A
n

a
ly

s
is

HW code

Phase 1

Phase 2

Iteration

Phase 3

Results:

• Suggested partitioning for the

application

• Suggested MPSoC architecture

(number of processors,
communication infrastructure)

Results:

• Identified hotspots for each

processor

RAMPSoC MPI
Library

Commercial tools

Custom tools

Manual steps

CompilerHW-Synthesis

System integration: GenerateRCS

XML layout &

Task graph

Full

Bitstream

Partial

Bitstream

SW

ExecutablePartial

BitstreamPartial

Bitstream

SW

ExecutableSW

Executable
Inputs/Outputs

M-to-C Code Compiler

M-code Application

Tracing

Application

Description

Advantages Disadvantages

VHDL, Verilog
Optimized Designs, Full

control over the design

Low level, Difficult to debug,

seldom used by application

engineers

Graphical Tools

(e.g.MATLAB HDL-

Coder, System

Generator)

High level,

Easy to use: Drag and Drop

Restricted to a specific IP

library

C, C++ (e.g.

CatapultC, Autopilot)

Fast design space

exploration, automatic

generation of IP-blocks

Special C, C++ coding style

required for good results,

generates only IP blocks not

full FPGA designs

T(x, y) : Sum of the profiled runtimes of the two tasks to be clustered

MPI_COM(x, y) : Communication costs between two tasks communicating via MPI

Call_COM(x, y) : Communication costs between two tasks in the callgraph

NH(x, y) : Proximity of two tasks based on the call graph

wMPI: Weighting factor for MPI communication

wCall: Weighting factor for call graph communication

a) Communication Analysis

 1 Processor

2 Processors

3 Processors

4 Processors

5 Processors

Step 4

Step 3

Step 2

Step 1

f1 f2 f3 f4 f5

fx: Function x, (Task Granularity used for the Hierarchical Clustering)













unknown ,if else,
),(

),(

),(

),(_

),(

),(_

),(

Call_COM MPI_COM
yxT

yxNH

yxT

yxCOMCall

yxT

yxCOMMPI

yxC
CallMPI ww

Search all files for

MPI_Init

Search all files for

function declarations,
multiple keyword and
MPI commands and

parameters

Find related MPI-

commands, e.g.
MPI_Send MPI_Recv

List of functions

with MPI-
information

C files

Summary-file with

call graph and MPI
graph

Add parameters

and information
to list of functions

Add MPI-

information to list
of functions

Search all files for

function declarations
and multiple keyword

Search all files, store function parameters and

generate the call graph

Summary-file with

call graph

Add parameters

and information
to list of functions

List of functions

MPI applicationNo MPI application

b) SW/SW Partitioning

Input Image

(ROI: 64x64)

Histogram

Equalization

Squared

Normalized Cross
Correlation

Hotspot

Detector

Output Image

a) 3D Ultrasound computer Tomography b) Object Recognition

FPGA

VHDL /

Verilog

C, C++
GUI + IP-

Library

IP-Block

Additional IP-Blocks or

VHDL Modules required

Applications Platforms

CUDA OpenCL

GPU

37

1147

3121

0

1000

2000

3000

4000

Energy eff iciency

CPU GPU RAMPSoC

[1/J]

0,45
2,35

10,88

0

5

10

15

Energy eff iciency

CPU GPU RAMPSoC

[1/J]

c) Energy Efficiency 3D USCT d) Energy Efficiency Object Recognition

13,37

1,85

31,15

0

10

20

30

40

50

Execut ion t ime per frame

CPU GPU RAMPSoC

Real-time: 25 fps

150

3,23

193

0

50

100

150

200

250

Execut ion t ime per A-Scan

CPU GPU RAMPSoC

b) Performance Object Recognitiona) Performance 3D USCT
us ms

Characteristic Description Consequence

Programming

Language

Programmed in C-like

languages such as NVIDIA’s

CUDA or OpenCL

Easier and faster design

flow than for FPGAs,

because more familiar to

application developers

Programming Model

Based on an implicit data-

parallel programming model

(single instruction, multiple

threads)

Write scalar code and

execute on thousands of

threads / data elements, no

support for task-parallelism

Communication &

Synchronization

Limited and costly inter-

thread communication and

synchronization

mechanisms

Most efficient if no global

communication between

threads and independent on

order of processing

GPU

