

IOSB

Karlsruhe Institute of Technology

High-Level Design for FPGA-based Multiprocessor Accelerators

Diana Göhringer¹, Matthias Birk², Michael Hübner², Jürgen Becker²

¹Fraunhofer-Institute for Optronics, System Technologies and Image Exploitation IOSB, Germany ²Karlsruhe Institute of Technology (KIT), Germany, diana.goehringer@iosb.fraunhofer.de, {matthias.birk, michael.huebner, becker}@kit.edu

1. Introduction: FPGA versus GPU Programming

Application Description	Advantages	Disadvantages	Applications -> Platforms Characteristic Description	Consequence
VHDL, Verilog	Optimized Designs, Full control over the design	Low level, Difficult to debug, seldom used by application engineers	Programming Language Programmed in C-like Inguage Such as NVIDIA's	Easier and faster design flow than for FPGAs, because more familiar to application developers
Graphical Tools (e.g.MATLAB HDL- Coder, System Generator)	High level, Easy to use: Drag and Drop	Restricted to a specific IP library	Verilog Library IP-Block Programming Model Based on an implicit data- parallel programming model (single instruction, multiple threads)	Write scalar code and execute on thousands of threads / data elements, no support for task-parallelism
C, C++ (e.g. CatapultC, Autopilot)	Fast design space exploration, automatic generation of IP-blocks	Special C, C++ coding style required for good results, generates only IP blocks not full FPGA designs	Communication & thread communication and Synchronization synchronization	Most efficient if no global communication between threads and independent on order of processing

2. Design Methodology for FPGA-based Multiprocessor Accelerators

3. Application Exploration

a) 3D Ultrasound computer Tomography

$\int \omega_{MPI} \frac{MPI _COM(x, y)}{T(x, y)} + \omega_{Call} \frac{Call _COM(x, y)}{T(x, y)}$

Sum of the profiled runtimes of the two tasks to be clustered MPI_COM(x, y) : Communication costs between two tasks communicating via MPI Call_COM(x, y) : Communication costs between two tasks in the callgraph

4. Results

5. References

- (1) D. Göhringer, M. Hübner, J. Becker, "Adaptive Multiprocessor System-on-Chip Architecture: New Degrees of Freedom in System Design and Runtime Support," in Multiprocessor System-on-Chip: Hardware Design and Tool Integration, M. Hübner and J. Becker, Ed. Springer, 2010, pp.125-149.
- (2) H. Gemmeke, N.V. Ruiter, "3D ultrasound computer tomography for medical imaging," Nuclear Instruments and Methods in Physics Research Section A, vol. 580, no. 2, pp.1057-1065, 2007.

