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Results:

• Partitioned application 

including an application task 
graph

• Full and partial FPGA  
configuration bitstreams

• software executables
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Results:

• Suggested partitioning for the 

application 

• Suggested MPSoC architecture 

(number of processors, 
communication infrastructure)

Results:

• Identified hotspots for each 

processor 
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Description 

Advantages Disadvantages 

VHDL, Verilog 
Optimized Designs, Full 

control over the design 

Low level, Difficult to debug, 

seldom used by application 

engineers 

Graphical Tools 

(e.g.MATLAB HDL-

Coder, System 

Generator) 

High level,  

Easy to use: Drag and Drop 

Restricted to a specific IP 

library 

C, C++ (e.g. 

CatapultC, Autopilot) 

Fast design space 

exploration, automatic 

generation of IP-blocks 

Special C, C++ coding style 

required for good results, 

generates only IP blocks not 

full FPGA designs 

T(x, y) :        Sum of the profiled runtimes of the two  tasks to be clustered 

MPI_COM(x, y) : Communication costs between two tasks communicating via MPI 

Call_COM(x, y) : Communication costs between two tasks in the callgraph 

NH(x, y) :     Proximity of two tasks based on the call graph 

wMPI:             Weighting factor for MPI communication 

wCall:             Weighting factor for call graph communication 

a) Communication Analysis 
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Search all files for 

MPI_Init

Search all files for 

function declarations, 
multiple keyword and 
MPI commands and 

parameters

Find related MPI-

commands, e.g.
MPI_Send MPI_Recv

List of functions

with MPI-
information

C files

Summary-file with 

call graph and MPI 
graph

Add parameters 

and information 
to list of functions 

Add MPI-

information to list 
of functions 

Search all files for 

function declarations 
and multiple keyword

Search all files, store function parameters and 

generate the call graph

Summary-file with 

call graph

Add parameters 

and information 
to list of functions 

List of functions

MPI applicationNo MPI application

b) SW/SW Partitioning 
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a) 3D Ultrasound computer Tomography  b) Object Recognition 

FPGA

VHDL / 

Verilog

C, C++
GUI + IP-

Library

IP-Block

Additional IP-Blocks or 

VHDL Modules required

Applications Platforms

CUDA OpenCL

GPU
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c) Energy Efficiency 3D USCT d) Energy Efficiency Object Recognition
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Characteristic Description Consequence 

Programming 

Language 

Programmed in C-like 

languages such as NVIDIA’s 

CUDA or OpenCL 

Easier and faster design 

flow than for FPGAs, 

because more familiar to 

application developers 

Programming Model 

Based on an implicit data-

parallel programming model 

(single instruction, multiple 

threads) 

Write scalar code and 

execute on thousands of 

threads / data elements, no 

support for task-parallelism 

Communication & 

Synchronization 

Limited and costly inter-

thread communication and 

synchronization 

mechanisms 

Most efficient if no global 

communication between 

threads and independent on 

order of processing  

GPU 


