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IntroductionIntroduction
BiofoulingBiofouling

• undesired growth of marine organisms on submerged structures and devices

• ubiquitously occurring phenomenon in tidal zones worldwide [1]• ubiquitously occurring phenomenon in tidal zones worldwide [1]

• world fleet fuel consume is additional 300 million tonnes higher as a result of fworld fleet fuel consume is additional 300 million tonnes higher as a result of f

• to prevent these effects caused by biofouling, suitable non-toxic

coatings for the marine environment are requiredcoatings for the marine environment are required

• our approach is to use well defined model surfaces to investigate influences oour approach is to use well defined model surfaces to investigate influences o

chemistry and morphology to develop design rules for non-fouling coatings

Kinetic e perimentsKinetic experiments
Motivation

p
Motivation

• surface chemistry and surface wettability strongly influence the rate of settlement

of Ulva zoosporesof Ulva zoospores

I t t l h d diff t t f ttl t diff t SAM i• Ista et al. showed different rates of spore settlement on different SAMs in assays
[4]of 60 min duration [4] [4][ ]

ResultsResults

Time depending settlement process on surfaces over a p g p

time of 36 h;time of 36 h;

) h l i t l d ti f 36 ha) whole experimental duration of 36 h

b) detailed view at first 2 h of the experiments,

grey area: Duration of a spore settlement assay of UoBg y p y

• PEG 2000-OH surface is resistant against spore settlement for about 10 hours before PEG 2000-OH degradationg p g

changes the surface propertieschanges the surface properties

• SAMs have different affinity towards macromolecules

• settlement could be a combined effect of surface chemistry and thesettlement could be a combined effect of surface chemistry and the 

f ti f diti i l Surface properties releformation of a conditioning layer Surface properties rele

Conditioning film experimentsConditioning film experiments
• C12 (dodecanthiolate SAM) is the  reference surface

• Kinetic experiments with spore water and Tropic Marine (commercial ASW)Kinetic experiments with spore water and Tropic Marine (commercial ASW)

XPS tElli t i D t XPS measurementsEllipsometric Data 
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Results

conditioning film is built up over time by macromolecules released from adult plants or swimming spores

I fl f diti i fil ttl t f l Ul liInfluence of conditioning film on settlement of alga Ulva linzag g
• normal assay with C12 surfaces incubated for different times in SP TM and without incubation

30min ASW 30min blank i e no 30 min spore

normal assay with C12 surfaces incubated for different times in SP, TM and without incubation

30min ASW 30min blank i.e. no 30 min spore 

preincubation water

SP
T 1h spore water 13h spore water 24h spore waterT
M

• data above show that pre-incubation with ‘spore water’ leads to a change in subsequent spore settlement

• the adsorbed dissolved organic carbon (DOC) molecules deter or promote spores settlement• the adsorbed dissolved organic carbon (DOC) molecules deter or promote spores settlement 

• distribution of settled spores changes from gregarious (clumped) to single spores and small groups with exposure to the 

conditioning solutionco d o g so u o
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Self-assembled monolayersSelf assembled monolayers

• Self-assembled monolayers (SAMs) on gold provide access to highlyy ( ) g g y

controlled surface chemistriescontrolled surface chemistries

• SAMs allow to fine tune physicochemical surface propertiesSAMs allow to fine tune physicochemical surface properties

fouling [2] • SAMs are a highly versatile tool to create defined thin organic filmsfouling [2] g y g

allow to change the surface chemistry without affecting the• allow to change the surface chemistry  without affecting the 

morphology or its elastic modulusmorphology or its elastic modulus

f surfacef surface

[3]

Bioinspired micro and nanostructuresBioinspired micro- and nanostructures
• motivated by patterns found on the skin of dolphins [5]motivated by patterns found on the skin of dolphins  [5]

dolphin skin Polyelectrolyte coating

• Polyelectrolyte self assembly used to prepare bioinspired, tuneabley y y p p p ,

surface topographiessurface topographies

• Ulva spores show reduced settlement density on structures smaller

than spore body size (~30-50% of its diameter)than spore body size ( 30 50% of its diameter)

h i l difi ti h d h [7]• chemical modification enhances or reduces roughness response [7]

but influence of roughness is preservedg p

evant for biofouling [8]evant for biofouling [8] 
E beam activated lithography (EBAL)E-beam activated lithography (EBAL) 

Atom transfer radicalAtom transfer radical 

l i ti (ATRP)polymerization (ATRP)

[9]
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0.75 µm 1.0 µmµ µ

harge
four different sizes:

harge
ctic point • 5.0 µm: bigger then spore body

larity • 2 5 µm: in the range of spore bodylarity 2.5 µm: in the range of spore body

1 0 µm: smaller then spore body• 1.0 µm: smaller then spore body

2.5 µm 5.0 µm • 0.75 µm: in nanometer range

Comparison polyelectrolyte with pNIPAM structuresComparison polyelectrolyte with pNIPAM structures

• Ulva spore settlement on the ‘flat’ PNIPAM

varies markedly between samplesvaries markedly between samples 

id li 0 1 0 d 2• spores avoid settling on 0.75, 1.0 and 2.5 µm

structure when offered a ‘flat’ alternative of

same chemical compositionsame chemical compositionLowest settlement from 
• settlement is higher on 5 µm structure1 – 2 5 μm feature size1 2.5 μm feature size,

lid f PE dvalid for PE and

honeycombs y

Conclusions AcknowledgmentConclusions Acknowledgment
• surfaces condition within 24h if spore water (SP) is used

g
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• surfaces conditioning is happening at longer timescale than typical Ulva assays Research (Grant number N00014-08-1-1116).g pp g g yp y

• conditioning film influences spore settlement
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• Nicolaus Meyerbröker for help with the XPSconditioning film influences spore settlement

id f t t hi h i t l h lf f th i i
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• Stefan Heissler for his help with the IR spectrometer• spores avoid surface structures which are approximately half of their own size • Stefan Heissler for his help with the IR-spectrometer

• convoluted effect between chemistry and structure has been disentangled
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