

A five step pyrolysis mechanism for wood burning models

H. Mätzing, H.-J. Gehrmann, D. Merz, T. Kolb, H. Seifert

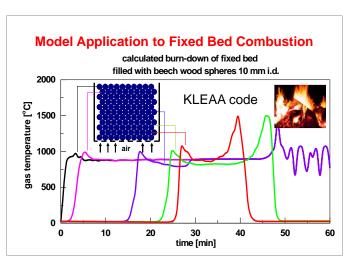
KIT, Institute of Technical Chemistry, Postfach 3640, D-76021 Karlsruhe, Germany

Key Questions of Wood Pyrolysis

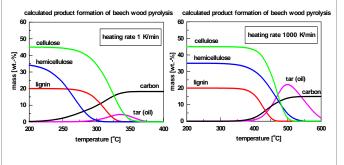
- Dependence on heating rate
- Dependence on sample size
- Product distribution
- Upscaling of laboratory TG results
- Appropriate global model
- Many similar experimental results, but many different interpretations.

Approach in this work

- TG measurements at several heating rates
- Three and five step global models developed using monomer formulas for wood components: C₆H₁₀O₅ cellulose → gas + 2.5 C


\rightarrow	0.75	i tar	+	gas	+	0.625	С

$C_6H_{10}O_5$	tar	\rightarrow	gas		
$C_5H_8O_4$	hemicellulose	\rightarrow	gas	÷	2 C
$C_{10}H_{10}O_{4}$	lignin	\rightarrow	gas	+	4.3 C


Properties of Global Models

- Rate constants fitted to global reactions are subject to the assumed mechanism, hence they are not exchangeable between different models, in contrast to elementary reactions.
- In 1 and 3 step models, fitted rate constants depend on heating rates, which is plausible only for samples of large size.

Comparison of 3 + 5 step Models with Experiment thermogravimetry of beech wood, 1 K/min 100 dm/dt [%/min *15 + 100] no peak splitting 80 in experiment, this work, and in 60 5 step model 40 peak splitting 20 predicted by 3 step model 0 0 100 200 300 400 temperature [C]

Model Calculation of Tar (Oil) Formation Preliminary Results for Non-Isothermal Conditions

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association