

Karlsruhe Institute of Technology

KIT, Campus South, Institute of Organic Chemistry (IOC) KIT, Campus North, Institute of Functional Interfaces (IFG)

Synthesis and hydrogen isotope labelling of N-acyl-L-homoserine lactones (AHLs)

<u>Dorota Jakubczyk^{a,b}, Stefan Bräse^a, Gerald Brenner-Weiß^b</u>

^a Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; E-mail: dorota.jakubczyk@kit.edu ^b Karlsruhe Institute of Technology, Institute of Functional Interfaces, Hermann von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Introduction

N-acyl-L-homoserine lactones 1 (AHLs) are natural products which

belong to **semiochemicals** (signal

Results and discussion

Table 1. Results for the deuterium labelling of the terminally unsaturated AHLs; ^a Determined by ¹HNMR and mass spectrometry; ^b Determined by ESI-TOF MS.

molecules or infochemical compounds). They act as messengers within (pheromones) or between (allomones) species.

AHL is so-called quorum sensing molecule, which enables inter-bacterial and inter-kingdom communication (Inter-kingdom Signalling).

Inter-kingdom Signalling

Interactions with a variety of mammalian cells:

- Induction of apoptosis
- Induces the chemotaxis of neutrophils (Fig. 1)

Fig. 1. Chemotaxis of neutrophils

Deuterium and tritium labelled compounds have several important applications in many branches of science e.g. in the investigation of drug metabolism, biological activity, reaction mechanisms or kinetic studies.

Contrary to most of the isotopic labelling methods based especially on the use of tritium gas, this procedure does not require sophisticated apparatuses, complicated work-up and the tritium gas is generated in situ from a solid reagent.

Moreover the uncommon catalytic reduction of the double bond is presented herein.

	Entry	n	Time [h]	Additives, notes	Other deuterated reagents	Yield [%]	D content ^a at preterminal C atom [%]	D content ^a at terminal C atom [%]	Isomers ^b
	1	1	25	H ₂ O	-	56	34-56	99	[M+(1,2,3,4)+H ⁺] [M-(1,2)+H ⁺]
	2	1	22,5	excess of NaBD ₄	D_2O , MeOD, 1M NaOD in D_2O	94	96	99	[M+(1,2,3,4,5,6)+H ⁺] [M-(1,2)+H ⁺]
-	3	1	17	excess of NaBD ₄	MeOD, 30% NaOD in D ₂ O diluted in MeOD (1 M NaOD)	89	70	99	[M+(1,2)+H ⁺] [M-(1,2)+H ⁺]
-	4	3	22	H ₂ O	-	83	54	99	[M+(1,2,3,4)+H ⁺] [M-(1,2)+H ⁺]
	5	4	18	H ₂ O	-	74	41	99	[M+(1,2,3,4)+H ⁺] [M-(1,2)+H ⁺]
-	6	6	20	H ₂ O	-	94	51	99	[M+(1,2,3,4)+H ⁺] [M-(1,2)+H ⁺]
-	7	6	23	excess of NaBD ₄	D_2O , CD_3COOD , MeOD,1M NaOD in D_2O	90	69	99	[M+(1,2,3,4,5,6)+H ⁺] [M-(1,2)+H ⁺]

2.1. Synthesis of a highly biologically active, deuterium and tritium labelled N-(3-oxododecanoyl)-L-homoserine lactones (scheme 3)

Aim

Synthesis and hydrogen isotope labelling of N-acyl-L-homoserine lactones

- Detection of AHLs crossing eukaryotic cell membranes
- Elucidating the mechanism of Inter-kingdom Signalling

Results and discussion

1.1. Synthesis of terminally unsaturated *N*-acyl-L-homoserine lactones - substrates for the isotopic labelling (scheme 1)

Scheme 1. a) Oxalyl chloride, hexane, RT-45°C, 20-22 h; b) L-homoserine lactone hydrobromide, Et₃N, CH₂Cl₂, 0°C-RT, 4,5-5,5 h; n = 1, 3, 4, 6.

1.2. Deuterium labelling via catalytic reduction of the double bond (scheme 2)

80-95% R

Scheme 3. a) 4-Dimethylaminopyridine (DMAP); 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC); CH₂Cl₂;RT; b) L-homoserine lactone hydrobromide, Et₃N; CH₃CN; RT-80°C; c) Ethylene glycol, *p*-TsOH, CH(OMe)₃, PhMe, 110°C-RT; d) Pd(OAc)₂, THF, CH₃COOH, MeOH, NaBR₄, NaOH_{ag}, -196 °C – RT; e) HClO₄, CH₂Cl₂, 0°C-RT; R = H, D or T; Y = yield (see Table 2).

Table 2. Results for the synthesis of the deuterium and tritum labelled *N*-(3-oxododecanoyl)-L-homoserine lactone ; ^a Determined by ¹HNMR and mass spectrometry; ^b Determined by ESI-TOF MS; ^c Determined by Liquid Scintillation counter.

Step d											
Entry	R	Time [h]	Additives,n otes	Other deuterated reagents	Yield [%]	D content ^a at preterminal C atom [%]	D content ^a at terminal C atom [%]	Isomers ^b	Specific radioactivity ^c [mCi/mmol]		
1	Н	13	$NaBH_4$	-	81	-	-	-	-		
2	D	16	excess of NaBD ₄	1M NaOD (30% NaOD in D ₂ O diluted in MeOH)	79	90	99	[M+(1,2)+H ⁺] [M-(1,2)+H ⁺]	_		
3	D	20	excess of NaBD ₄	MeOD, 30% NaOD in D ₂ O diluted in MeOD (1 M NaOD)	89	68	99	[M+(1,2)+H⁺] [M-(1,2)+H⁺]	-		
4	D	20	NaBD ₄ Pd(PPh ₃) ₄	-	Failed	-	-	-	-		
5	т	16	NaBT ₄	-	78	95	99	[M+1+H ⁺] [M-1+H ⁺]	588,5		

Scheme 2. Deuterium labelling of AHLs via catalytic reduction of the double bond (See Table 1).

Unconventional conditions of the reaction (Fot. 1, 2, 3)

Fot. 1. Reaction starts in the liquid nitrogen Fot. 2. Agitation in the thermomixer

Conclusion

• The new methods of isotopic labelling of AHL was developed. The method is efficient and enable further biological investigations;

Structures of the products were confirmed by TLC, ¹H NMR, ¹³C NMR, ESI-TOF MS, HRMS, IR and Raman spectroscopy, TLC / autoradiography and Liquid Scintillation Counter.

References

[1] Schwarzmann, G. Biochim. Biophys. Acta **1978**, 529, 106; [2] Amara, N.; Mashiach, R.; Amar, D.; Krief, P.; Spieser, S. A. H.; Bottomley, M. J.; Aharoni, A.; Meijler, M. M. J. Am. Chem. Soc. 2009, 131, 10610; [3] http://spot.pcc.edu/~jvolpe/b/bi234/lec/8_9defenses/8_hostDefense1_L.htm; accessed 04.07.2011; [4] Chhabra, S. R., C. Harty, et al., Journal of Medicinal Chemistry, 2003, 46(1) 97-104.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

