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Increase of shear strength by reduction of 

residual stresses  in

laser brazed Al2O3/steel-joints
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1st : simulation of brazing processs

2nd step: stress analysis
The ceramic pellet exhibits two areas 

of stress maxima:

stress maximum at 
friction surface

stress maximum 
at joining surface
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                           material

property
Al2O3 C45E Incusil ABA

Ag-Cu-In-Ti
CB4

Ag-Cu-Ti

company Friatec AG - Morgan Chem. Brazetec

density ρ / g/cm³ 3.95 7.85 9.7 9.63

strength σ / MPa 350 560-710 338 72

Youngs modulus E / GPa 380 210 76 0.23* 

thermal conductivity λ, W/mK 38 44 166 20* 

CTE α, 10-6 m/K 8.4 11.0 18.2 170* 

effect of element size on σ1max

sequential temperature-stress-analysis:

calculated temperature distribution provides as  

loading for stress calculation

evaluation of calculated stress:

σ1-stress in ceramic pellet are considered to be

failure relevant

of stress maxima:

Shear Testing
tempered plunger

Youngs modulus, CTE, thermal conductivity and σ were implied as thermal dependent paramters.  

STAUi t

value of σ1max on joining surface is explicitly dependent on element size (singularity)

value of σ1max on the friction surface is independent of element size 
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experimental: material parameter

fe-interface

output: Pf , Veff

finite-element modelling:

geometry, loading

spontaneous fracture: m, σ0     

crack growth: n, B, (p)

numerical integration
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σ1 - stress distribution (fem)

PF: fracture load
R:   sample radius
τ: fracture stress
m: Weibull modulus 

τ = PF
π · R²

F = i 
n + 1

F: fracture probability
i:  sample number
n: number of samples

element size: 0 05 element size: 0 5

τ0* m
Gauß laser profile MPa -
non structured 21 4.9

Tophead laser profile
non structured 25 1 9

Weibull evaluation of shear tests

local risk of fracture (STAU)*

local risc 

of fracture

maximum fracture risk

Location of σ1max and maximum local risk 
of fracture agree with real  crack starting 
point of laser brazed joints
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Cu-interlayer lead to: 

reduction of σ1max

reduction of Pf

influence of Cu-Interlayer on σ1max and Pf

increase of  joint strength through: 

homogenized laser profile

Cu-interlayer and 

non structured 25 1.9
non structured + Cu-layer (500µm) 39 1.5
non structured + Cu-layer (1000µm) 71 1.7
structured steel 39 2.1

∗τ0 = τ (F=63,2%) 

XRD-measurement
Al2O3-ceramic metal
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SEM- images of laser brazed  joints

influence of seam geometry
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conformity of 
experiments & models

Summary

structured steel surface

Shear testing of laser brazed joints

Increase of joint strength and reduction of reliability through 

heating with homogenized laser  intensity profile, 

Cu-interlayer and 

structured steel surfaces

XRD measurement were carried out by IAM-WK, KIT – Campus South

textures in ceramics lead to large inhomogeneity of x-ray signals 

general compliance of calculated and measured residual stresses

tangential
axial

measuring points
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437 MPa

First principle stress in ceramic pellet

404 MPa
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variation of seam contour  (fem)
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Finite Element Modelling of laser brazing process

A reduction of element size in the ceramic/braze interface affects an explicit

increase of σ1max (singularity)

Thin metal carrier evoke bending of ceramic high σ1-values

Reduction of σ1max through Cu-interlayer

Seam geometry braze has an value of σ1max singularity

XRD measurement of residual stress

General compliance of measured and calculated axial and tangential stress, 

but  large deviation according to textures in the ceramic
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value of σ1max on joining surface is explicitly dependent on seam geometry

Calculation of fracture probability

Agreement of calculated local risk of fracture and real crack configuration

Reduction of calculated fracture probability through Cu-interlayer correspond 

to experimental results 


