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1. Introduction

In the light of global warming there is a growing concern on regional and local

scale climate change impacts. Even high resolution regional climate models

are usually not capable to reproduce observed small scale climate

characteristics, particularly in complex terrains. Significant biases (Fig. 1) in

simulated meteorological fields, such as e.g. precipitation and temperature, omit

the direct use of model output for subsequent impact models. We investigate

the possibility to use a copula-based technique to further refine and bias-

correct regional climate model output on a daily time scale. Copula-based

methods allow for a highly flexible consideration of the dependence between

local, small scale climate characteristics and regional or global formation.

The approach allows to model the dependence of variables independently from

the choice of the marginal distributions.

Fig. 1: Domain and topography of regional climate simulations (left). Bias of mean

annual total precipitation for the MM5 with respect to the DWD reference data set [%]

2. Research Area & Data

Regional climate simulations for Germany (Fig.1, left) are obtained within the

DEKLIM project using the Penn State/NCAR Mesoscale Model MM5 and

ECMWF/ERA15 reanalysis data for 1979-1993 at 19.2 km spatial resolution.

Local rainfall information is obtained from the German weather services

(DWD). For the Alpine region of Germany, rainfall data of 132 observation

station are retrieved. It can be seen from Figure 1 (right) that rainfall is

overestimated by MM5 for the whole eastern part of Germany, and strongly

underestimated for the Rhine valley and the Alpine region of Germany. The

underestimation in the Alpine region is possibly due to the complex terrain with

very steep gradients of altitude.

3. Modelling the Dependence Structure between

Modelled and Observed Rainfall

3.1 Modelling the Marginals
Modelling the single marginal distributions requires the observations to be

independent and identically distributed (iid). However, most climatological

time series exhibit some degree of autocorrelation and heteroskedasticity.

The ARMA-GARCH composite model is used to generate iid variables, followed

by fitting the marginals, and a joint distribution function (Copula) to model the

dependence between modelled and observed rainfall time series.

3.1.1 ARMA-GARCH-Filter
An ARMA model is used to compensate for autocorrelation, and a GARCH

model to compensate for heteroskedasticity (time-varying variance). GARCH

stands for Generalized Autoregressive Conditional Heteroskedasticity. The term

Conditional implies explicitely the dependence on a past sequence of

observations, and Autoregressive describes a feedback mechanism that

incorporates past observations into the present

3.1.2 Generalized Pareto Distribution

The residuals of the ARMA-GARCH model are fitted to a semi-parametric CDF.

First, the empirical CDF of each variable is estimated using Gaussian kernel

function. This provides a relatively good fit to the lower tails and the interior of

the distribution of the residuals, but this procedure tends to perform poorly when

applied to upper tails. Thus, the upper tails are fitted separately from the interior

of the distribution. For this reason, the peaks over threshold method is applied:

A POT value of 0.1 is chosen, i.e. the upper 10% of the residuals are reserved

for the upper tail. The extreme residuals are fitted to a parametric GPD using

maximum likelihood. Given the exceedance in the upper tail, the negative log-

likelihood function is optimized to estimate the tail index and the scale

parameter of the GPD. The piecewise distribution object allows for interpolation

in the interior of the CDF but also extrapolation in the upper tail.

3.2 Copula Theory: Joint Dependence Structure

Copulas are functions that link univariate distribution functions to form a

multivariate distribution function (Sklar,1959). For any bivariate distribution

function FXY(x,y) with univariate marginal distribution functions FX(x) and FY(y)

there exists a copula C such that:

In turn, they allow for separating the dependence structure from the marginal

distributions in a multivariate distribution if the pdf c is known. The construction

of Copulas is therefore reduced to the study of the relationship between the

correlated iid variables, giving freedom for the choice of the univariate marginal

distributions:

The dependence structure of daily measured precipitation on simulated

precipitation is studied. Since the underlying (theoretical) copula is not known in

advance, it is necessary to analyze the empirical density copula, which is solely

based on the data.
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4. Modelling Approach

Fig. 3 (left) shows the empirical copula density between modelled and

measured rainfall residuals for station Garmisch-Partenkirchen. It can be seen

that the distribution is strongly asymetrical for the minor diagonal, and that the

density in the upper corner is highest. This implies that modelled and observed

rainfall are strongly dependent in the higher ranks of the distribution, and the

dependence is weaker in the lower ranks.

Fig. 2: K-plot of the observed rainfall time series at Garmisch-Partenkirchen (Germany) before

ARMA-GARCH transformation (left), after ARMA-GARCH transformation (middle), and a

random variable (right). Superimposed on the graphs are a straight line corresponding to the

case of perfect independence and a curve corresponding to perfect positive dependence.

Based on the empirical copula density a theoretical copula model can be

estimated using goodness-of-fit tests. Here, the Gumbel copula (Θ=1.097) is

chosen (Fig 3, right). Once the copula-based joint distribution is estimated

conditional random samples from this distribution can be generated through

Monte Carlo simulations . The conditional simulation of (x,y) is divided into four

steps:

1. Compute u=FX(x)

2. Draw random samples of v|u using the inverse conditional CDF CV|U
-1(v,u)

3. Invert from v to obtain y

4. Reintroduce the autocorrelation and heteroskedasticity observed in the origi-

nal time series  
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Fig. 3: Empirical copula density between modelled and observed rainfall (left). Gumbel

copula probability density function (Θ=1.097) (right).

5. Outlook

- Analysis of copula density depending on the altitude and flow direction of the

observation station

- Comparison of copula-based method with “traditional” methods
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