

Karlsruhe Institute of Technology Institute of Functional Interfaces

Amphiphilic Polysaccharides as Inert Surface Coatings

UNIVERSITÄT HEIDELBERG

<u>S.Bauer</u>,^{1,2}* M.P. Arpa Sancet,^{1,2} J.Finlay,³ M.E.Callow,³ J.A.Callow,³ N.Aldred,⁴ A.S.Clare,⁴ M.Grunze^{1,2} and A.Rosenhahn^{1,2}

¹ Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany

² Institute of Functional Interfaces, IFG, Karlsruhe Institute of Technology, PO Box 3640, 76021 Karlsruhe, Germany

³ School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

4 School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

Hyp

σ

σ

Motivation

F1s

a.

sity

- CS + TFEA

·ΗΔ

HA + TFEA

- Polysaccharides are resistant to the adhesion of proteins, mammalian cells and bacteria^[1]
- Against marine biofoulers, the coatings perform worse than expected due to the complexation of

duction

bivalent ions^[2] Chondroitin-6-Sulfate (CS) Hyaluronic Acid (HA)

• Glycosaminoglycans, found in the extracellular matrix, highly hydrophilic, differ in sulfatation of CS,

- Sis • Polysaccharides are biocompatible and non-toxic othe
 - Capping of free carboxyl-groups prevents complexation of bivalent cations like Ca²⁺ and hence syneresis of the films

• A hydrophobic protection molecule (fluorinated amine) establishes amphiphilic properties in the highly hydrophilic polysaccharide network

• Additionally, the contact angle is shifted towards the minimum in the Baier curve

Intro

- both have only one carboxylic-acid moiety per disaccharide unit. The use of CS is bioinspired due to its presence in fish mucus and its potential contribution to protection of the skin of fish^[3]
- Amphiphilic surface-coatings have a higher anti-fouling performance than those which are only hydrophilic or hydrophobic^[4]

saccharid

NHS/EDC

in HEPES

Polysaccharide coupling procedure:

- APTMS 3-Aminopropyltrimethoxy silane NHS – *N*-Hydroxysuccinimid EDC - N-(3-Dimethyl amino propyl)-3-ethyl carbodiimid TFEA – Trifluoroethylamine
- APTMS acetone OH OH

1. Silanization 2. Polysaccharide coupling

Characterization:

Coating	APTMS	НА	CS	HA + TFEA	CS + TFEA
Contact angle [°]	35 ± 5	< 10	11 ± 3	25 ± 5	28 ± 3
Ellipsometric thickness [Å]	11.4 ± 4.0	26.6 ± 6.6	26.5 ± 7.1	28.2 ± 5.1	28.6 ± 4.0
Thickness from XPS [Å]*	n.a.	23.3 ± 2.5	18.6 ± 5.6	24.8 ± 4.2	23.2 ± 7.7

• Standard assays with a range of different foulers to correlate the change in surface chemistry with

the different settlement preferences: biofilm building microorganisms, hard and soft macrofoulers

* Thickness determined by attentuation of the Si2p signal of a representative APTMS layer

Iration repa Δ Surface

All polysaccharide coatings are resistant against both

Field tests in Melbourne, Florida (USA)

+ TFEA

3. Polysaccharide modification

saccharide

	 negatively charged proteins Positively charged proteins adhere more readily compared to the negative ones, but in most cases weakly compared to the not-resistant C₁₂–SAM standard 	 Settlement after 48h incubation in sea water Quantification of organisms bigger than 10μm by optical microscopy All sugar coatings reduce settlement 130 - 120	others Peritrich Grammatophora Bacillaria Amphora
Literature	 Morra, M.; Cassineli, C. <i>J. Biomater. SciPolym. Ed.</i> 1999, <i>10</i>, <i>1107</i>. Cao, X. Y.; Pettit, M. E.; Conlan, S. L.; Wagner, W.; Ho, A. D.; Clare, A. S.; Callov, Callow, M.E.; Grunze, M.; Rosenhahn, A. <i>Biomacromolecules</i> 2009, <i>10</i>, 907. Shephard, K. L. <i>Rev. Fish. Biol. Fish.</i> 1994, <i>4</i>, 401. Krishnan, S.; Wang, N.; Ober, C. K.; Finlay, J. A.; Callow, M. E.; Callow, J. A.; He K. E.; Kramer, E. J.; Fischer, D. A. <i>Biomacromolecules</i> 2006, <i>7</i>, 1449. Prime, K. L.; Whitesides, G. M. <i>Science</i> 1991, 252, 1164. 	J. A.; emer, A.; Sohn, Bemer, Bemer,	Mastogloia
Ackı	The work was funded by the Office of Naval Research (Grant number N00014-08-1- 1116).	• Opposite behavior or no change in settlement of the different species is observed for CS coatings (likely related to the negative charge carrying sulfate-group)	Poly(ethylenglykolmethacrylat) AA – Alginic Acid

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

* Email: stella.bauer@pci.uni-heidelberg.de

www.kit.ed