Oxidation and reforming of light hydrocarbons over Rh/Al$_2$O$_3$ catalyst by using a stagnation-flow reactor

Canan Karakaya1, Lubow Maier2, Olaf Deutschmann1,2

Nicholas E. McGuire3, Neal P. Sullivan3, Robert J. Kee3

Introduction

The complexity of reaction mechanisms for the simultaneous description of catalytic partial and total oxidation as well as reforming and pyrolysis of light hydrocarbons such as methane (CH$_4$) and propane (C$_3$H$_8$) requires linking of well-defined experimental and numerical studies to gain a better understanding on a molecular level [1]. The stagnation-flow reactor is a valuable laboratory-scale reactor concept to study catalytic chemistry, because a zero-dimensional catalytic surface can be realized, i.e. well-defined gas-phase concentrations and temperatures can be used to explore the intrinsic kinetics of the system [2]. In this study, under varying conditions (fuel/oxygen ratio, temperature) total oxidation of H$_2$, CO as well as the water gas shift reaction (WGS), reverse WGS, steam reforming and partial oxidation of CH$_4$, C$_3$H$_8$ species have been investigated at varying conditions to improve our understanding of the reaction mechanism.

Stagnation-Flow Reactor

![Stagnation-Flow Reactor Diagram](Image)

Figure 1: Stagnation-flow reactor

- Zero-dimensional on the catalyst surface
- Temperature and species profiles do not vary in radial directions
- T, C, ρ = f(z)
- Potential flow:
 - No vorticity, no curl,
 - Pressure gradient is constant
- Problem can be reduced to 1D steady-state problem.

Experimental

- 5% Rh/Al$_2$O$_3$ catalyst is prepared by spin-spray coating.
- Pressure is kept constant at 500 mbar. A quartz microprobe (with a 50μm opening) is used to sample the gas composition.
- Profiles of the species resolved in the gas-phase as function of distance of the catalytic surface using mass spectrometer and FT-IR analytics.
- Computational simulations are performed using the software SPIN, which is a part of CHEMKIN package [3].

![Microprobe Sampling Diagram](Image)

Figure 2: Microprobe sampling [2]

Results

- H$_2$ Oxidation: $H_2 + \frac{1}{2} O_2 \rightarrow H_2O + \Delta H = -286 \text{kJ/mol}$
- CO Oxidation: $CO + \frac{1}{2} O_2 \rightarrow CO_2 + \Delta H = -393 \text{kJ/mol}$
- Water Gas Shift (WGS) and Reverse WGS Reactions
- Reforming of CH$_4$: Partial oxidation and Steam Reforming
- Reforming of C$_3$H$_8$: Partial oxidation and Steam Reforming

References

[1] Institute for Chemical Technology and Polymer Chemistry, Germany
[2] Institute for Catalysis Research and Technologies, Germany
[3] Engineering Division, Colorado School of Mines, Golden, USA

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu