
Institute for Data Processing and Electronics
Herrmann-von-Helmholtz-Platz 1
D-76344 Eggenstein-Leopoldshafen

A Parallel Computing Framework for Real-Time
Tomographic Reconstruction with GPUs
Matthias Vogelgesang, Suren A. Chilingaryan
matthias.vogelgesang@kit.edu

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

Motivation

Computer Tomography (CT) at synchrotron sites reveals
fine spatial and temporal details of biological and techno-
logical processes

Therefore, we develop system for

Fast image acquisition (beamline and detector),

Fast image processing (this work) and

Fast and big storage

Real-time CT becomes only possible using GPUs as
shown in our previous work [1]

Segmented head of a reconstructed weevil

Background

The filtered back-projection (FB) for CT reconstruction con-
sists of the following steps:

1. Reduce noise in projections

2. Generate sinograms from cleaned projections taken at an-
gles between 0 and π

3. Transfer sinograms into Fourier domain using FFT

4. Filter with a high-frequency emphasizing filter

5. Transfer back into spatial domain

6. Back-projection to compute attenuation factors

First projection at ϕ = 0

Last projection at ϕ = π
2

Sinogram for one slice

ϕ

Artifacts in a generated sinogram

Projection
1

Projection 2

Reconstructed Slice

Forward-projection Back-projection

Our Approach

Integrating all reconstruction steps provides opportunities to
increase performance and flexibility. Hardware-awareness
and

Using an integrated approach offers optimal performance,
because expensive writes to disk and unnecessary copy op-
erations between host and GPU can be avoided.

Our framework is built on top of an extended image pro-
cessing pipeline

A pipeline stage can be a Split container

Task A

Task B

(a) Task Parallel

Task C

Task C

(b) Data Parallel

A Sequence container resembling a classic pipeline and
used for overlapping parallelism

Task BTask A Task C

Or a composition using both types

Task C

Task A Task B

The atomic pipeline stages represent computational tasks,
which

receive data as pointer to Buffers from an input queue,

process data on host CPU or GPU (by implicit copying),

push processed data into its output queue.

Implementation

Implementation of the framework and all CT reconstruc-
tion stages using C, OpenCL, GLib and GObject

Each step from the reconstruction process is mapped
to one task stage utilizing the GPU

No explicit synchronization in task stages, because of
asynchronous queues between two stages

Scheduling

High performance is reached with a combination of
multi-threading – each task stage runs in its own
thread of execution – and GPU assigment strategies:

Task A

Task B

GPU 0

Task YTask X Task Z

GPU 1

For pipelining preserve data on same GPU

Otherwise distribute work on different GPUs

Results

First unified image processing framework for synchrotron
CT based on OpenCL

Fast processing

GPU Server

Fast Desktop

Tesla S1070

0 200 400 600 800 1000 1200

1099Xeon Server

269 Desktop

75

64

40

Reconstruction time in seconds

Simple configuration

{
"type" : "sequence",
"elements" : [
{ "type" : "task", "plugin" : "reader" },
{ "type" : "task", "plugin" : "fft",

"properties" : { "dimensions" : 1 }
},
{ "type" : "task", "plugin" : "filter",

"properties" : { "filter-type" : "ramp" }
},
{ "type" : "task", "plugin" : "ifft",

"properties" : { "dimensions" : 1 }
},
{ "type" : "task", "plugin" : "backproject",

"properties" : {
"axis-pos" : 413.5,
"angle-step" : 0.01256637

}
},
{ "type" : "task", "plugin" : "writer" }

]
}

JSON configuration for filtered back-projection

Fast prototyping

from gi.repository import Framework
construct a pipeline object
pipeline = Framework.Pipeline()
get default Sequence stage
root = pipeline.get_root()
add task stages and execute
bp = pipelin.get_plugin(’backproject’)
bp.set_properties("axis-pos", 413.5, \

"angle-step" : 0.012566)
root.add_element(pipeline.get_plugin(’reader’))
root.add_element(bp)
root.add_element(pipeline.get_plugin(’writer’))
root.run()

Python example to setup reconstruction

References

[1] S. Chilingaryan, A. Mirone, A. Hammersley, C. Fer-
rero, L. Helfen, A. Kopmann, T. dos Santos Rolo, and
P. Vagovic, “A GPU-Based Architecture for Real-Time
Data Assessment at Synchrotron Experiments,” IEEE
Transactions on Nuclear Science, 2011.

