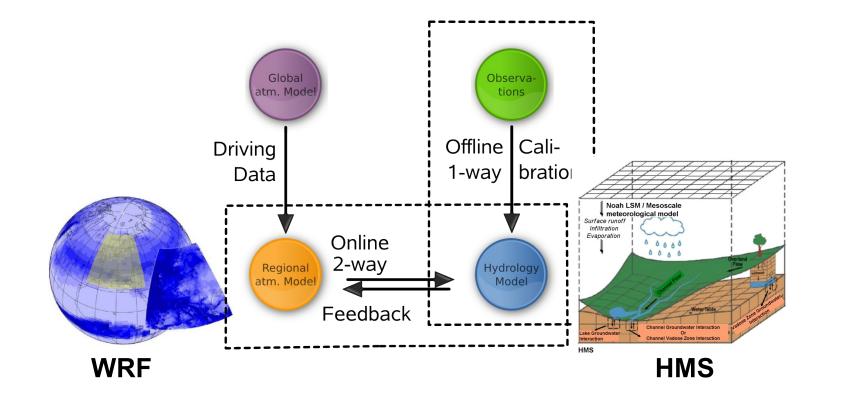
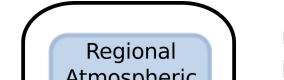


Helmholtz Climate Initiative

Regional Climate Change

Towards Closed Regional Atmospheric and Terrestrial Water Balance Modeling with WRF-HMS (TP4)


Benjamin Fersch (fersch@kit.edu), Sven Wagner and Harald Kunstmann KIT IMK-IFU, Garmisch-Partenkirchen Fei Yuan, Chuanguo Yang, and Zhongbo Yu Department of Hydrosciences, Nanjing University, China

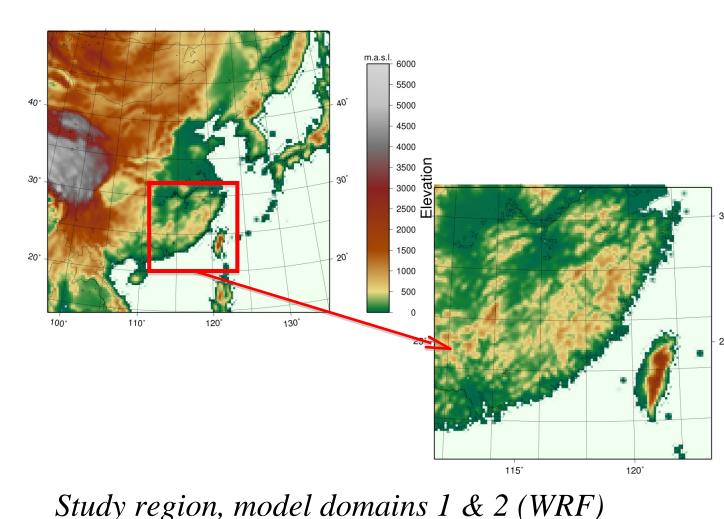

www.imk-ifu.kit.edu

www.reklim.de

Vegetation

Concept of Closed Regional Water Balance Modeling

radiation precipitation


Technical Realization of the Coupling Scheme

• Introduce a deep unsaturated zone between the bottom of LSM and ground water level

Atmospheric Model	evapotranspiration
Common Interface	compatible formulation of water and energy fluxes
Distributed Hydrological Model	surface runoff infiltration groundwater flow

Compartment crossing coupled modeling system WRF-HMS

Water Budget Study for the Poyang Lake Region (China)

- Investigation of feedback mechanisms among land-surface and subsurface conditions with the atmosphere
- Assessment of the impact of land-use change scenarios on the regional water cycle in combination with climate change
- The Poyang Lake region features shallow groundwater levels that are in active exchange with the atmospheric boundary layers

- The soil moisture profile in this zone is determined by equating downward drainage with upward vertical diffusion assuming equilibrium soil moisture profile
- Soil hydraulic properties: Clapp and Hornberger approximation
- **3 Coupling Modes:**
- NO COUPLING:
- No interaction between LSM and groundwater
- COUPLING METHOD 1: Soil moisture (θ) has a linear changing trend in deep unsaturated zone
- COUPLING METHOD 2:
- Pressure head (ψ) has a linear changing trend in deep unsaturated zone

Coupling scheme

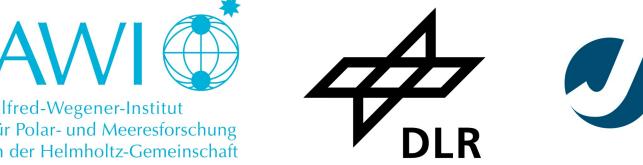
Groundwater

Deep unsaturated zone

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Soil

- Model configuration:
 - Resolution: 30 km (domain 1), 10 km (domain 2); Driving: ECMWF ERA-INTERIM • Timestep: 60 sec WRF (domain 2), 1 hour HMS
 - Domain 1: uncoupled Noah-LSM; Domain 2: coupled Noah-LSM-HMS


Deviations in Water and Energy Fluxes between Coupled and Uncoupled simulations

Water budget time-series for a single model grid cell and respective cumulative fluxes / differences of annual sums or means for the Poyang Lake Region, China.

- The application of the two way fully coupled regional atmospheric / hydrological model WRF-HMS has a significant effect on the water and energy fluxes on regional scales
- The introduction of a deep unsaturated zone that interacts with the soil profile of the LSM and the groundwater enables the exchange of water from deeper and larger storage bodies
- Changes in water and energy fluxes are congruently experienced throughout the different compartments
- Significant alterations of precipitation and evapotranspiration are obtained when coupling is enabled
- The model remains stable, no imbalanced conditions of the water fluxes are experienced for the 2003 simulation

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung Karlsruhe Institute of Technology

HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG UFZ