
Contacts:

84,1 x 118,9 cm² (DinA0)
R

G
B

Suren A. Chilingaryan
Email: Suren.Chilingaryan@kit.edu
Phone: +49 7247 82-6579

Andreas Kopmann
Email: Andreas.Kopmann@kit.edu
Phone: +49 7247 82-4910

Institute for Data Processing
and Electronics

ALPS – Advanced Linux PCI Services
for Rapid Prototyping of PCI-based DAQ Electronics

S. Chiligaryan, M. Caselle, A. Kopmann, U. Stevanovic, M. Vogelgesang
Karlsruhe Institue of Technology, Karlsruhe, Germany

Motivation Features

● Tiny and easy to support kernel module
● XML-based register model

● Access by address or name
● 8-64 bit little/Big-endian access
● Support of bit-fields

● Data Transfers
● Plain
● FIFO register
● High-speed DMA support

● Register/DMA scripting support
● Device specific functions using plugins
● Web service API (planned)

● Binding to multiple languages

ALPS (Advanced Linux PCI Services) are a flexible toolset to prototype and debug new PCI-based DAQ hardware
using an universal driver.

Driver
PCI Bar mapping
DMA Memory Management
IRQ Handling
Interlocking

Thin Linux Kernel Module
about 2000 lines only

PCILIB
User-space SDK Library

pcitool
Command-line tool

GUI
User Interface in Python/GTK

Web Service
Remote Programming Interface

Scripting
Bash, Perl, Python

LabVIEW
Control System Integration

PCI / PCI Express Board
(Variety of FPGA Boards: KIT High Speed Camera, etc)

DMA
Memory
Mapping

IRQ
Handling

Driver Access Layer

PCI Memory Access

Event Engine

IPE Camera

DMA Engine

Northwest Logic DMA

Register Access
XML Register List + Dynamic Registration API

PCI Memory Access
Plain and FIFO

Access
Serialization,
Software
Registers

pci --start-dma dma1
pci -g -o images.raw --run-time 60000000 &
pid=$!
for i in `seq 1 100000`; do
 old_size=`ls -la images.raw | cut -d " " -f 5`
 pci --trigger
 new_size=`ls -la images.raw | cut -d " " -f 5`
 usleep 100000
 if [$old_size -eq $new_size]; then

 echo "Incomplete frame..."
 killall -SIGINT pci
 break

 fi
done
wait $pid
pci --stop-dma

pci -r status
status = 0x80080000

pci -r 0x9000 -s 16 -a 32
9000: 00007300 00000000 00007300 00000000
9010: 000b7300 00000000 000b7300 00000000
9020: 00000004 00000000 00000004 00000000
9030: 00000004 00000000 00000004 00000000

pci –list-dma-buffers
Buffer Status Total Size
--
 0 U FL 4 KB
 747 U FL 4 KB
 748 U F 4 KB
 749 U L 8 B
 750 0 B

U - Used, E - Error, F - First block, L - Last Block

Example of script used for debugging of the high-speed camera to find a
problem with camera trigger signals (left). The presented script initializes
DMA engine and starts grabbing frames in the background process. The
software triggers are send in the loop. If after trigger is sent, the size of file
does not change within 100 milliseconds, the grabbing thread is killed and
the script is terminated without stopping DMA engine. Then, hardware
developer can investigate the status registers, state of DMA engine, etc
(right). It is possible to see that the last DMA message has extra 8 bytes
which could be the source of problem.

ALPS consists of the tiny kernel driver, SDK library (pcilib), and command-
line tool (pcitool). The GUI and Web Service interface are planned.

FPGA

Persistent buffers
in kernel space

Start DMA

Run1: Read DMA

Run2: Read DMARun2: Read DMA

Run3: Read DMA

Reusing buffers
•Check if buffer already allocated
•Positionate reading pointer
•Get Data
•Mark buffer free & ready

Allocate buffers
Enable DMA engine

Writing stable and performant drivers and keeping them
up to date with the latest Linux kernel is a complex and
tedious task. It is especially difficult to synchronize
parallel development of hardware and software.
However, many components of PCI driver are standard.
Basically, in development phase hardware engineers
often only need access to the device registers and the
ability transfer data between device and host memory in
few different modes. This functionality may be provided
uniformly for most devices by a universal driver. So, the
hardware design is not blocked by missing or
malfunction software and no software modifications are
required for hardware debugging.

Architecture

ExampleDMA Engine in User Space

Arbitrary
PCI

Device

XML
Register
Model

Scripting

DMA in
User
Space

There are 4 layers in SDK library: raw access to the PCI I/O memory,
register model, DMA engine, and device specific code.

KIT High Speed Streaming Camera
Resolution: 2048 x 1088 @ 10 bits:
Frame Rate: 300 fps
Data Rate: 1350 MB/s

● DMA implemented in user-space
● Tiny and easy to support kernel module responsible for

synchronization and memory management
● Easily extensible to new DMA protocols without kernel-level

programming
● Persistent kernel buffers

● Scripting and debugging support
● Read/Write/Peek functionality
● Page/Packet/Buffer access levels

● High performance
● 1350 Mb/s camera is tested with real-time frame decoding

	A Data Manager for KATRIN – Advanced Data Extraction Infrastructure (ADEI)

