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Evaluation of a closed tunnel for field-scale measurements  
of N2O fluxes at the soil-atmosphere interface 
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Background & Objectives 
Emissions of the powerful greenhouse gas nitrous oxide 
(N2O) from soils are commonly highly variable in space. An 
upscaling of classical small-scale chamber measurements 
is thus questionable and adds uncertainty to emission 
inventories or empirical emission factors. Therefore, field-
scale approaches will become increasingly important. 
Since micrometeorological tech-niques are often limited by 
stable atmospheric conditions and their low spatial 
resolution, we used a closed tunnel on an area of 500 m2 
equipped with an open-path Fourier Transform Infrared 
(FTIR) spectrometer and aimed to  
(i) evaluate its feasibility for measuring N2O concen-

trations and calculating field-scale N2O fluxes from 
an unfertilized grassland soil and  

(ii) compare those results with small-scale fluxes 
obtained from closed chamber measurements. 

 

Results 
 Combined tunnel / FTIR method enables precise, high-

density concentration measurements (about 12 per hr) 
during stable atmospheric conditions 

 Measurements are biased by high wind speeds, heavy 
rain and sun radiation (Figure 2a) 
 

 

Tunnel experiment, chambers and flux 
calculation 
 Measuring plot: unfertilized grassland on Gleyic Podzol 

in North Germany 
 Tunnel: Aluminium liner structure  (99 m × 5 m × 0.6 

m), closed with a plastic cover for emission 
measurements (Figure 1a,b); N2O concentration 
measurements by path-averaged Fourier transform 
infrared (FTIR) spectrometry   
 

 

Fig. 1: The tunnel (a) with its 
dimensions and the FTIR unit (b), 
and the closed chambers (c) located 
at the same plot. 
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 Calculation of a predeployment N2O flux Q0 by 
inverse modelling (IMQ0) (Schäfer et al., 2012): 1D 
numerical model which takes into account specific 
tunnel geometry, N2O diffusion from soil into the tunnel, 
N2O diffusion within the tunnel atmosphere, N2O 
detection by FTIR in 0.3 m above ground, and the 
diameter of the radiation beam (0.1 m) 

 Concurrent small-scale (0.05 m2) chamber measure-
ments in close vicinity to the tunnel;  calculation of 
N2O fluxes from four concentration measurements 
using the NDFE model (Livingston et al., 2006) 
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Fig. 2: Representative time course of N2O concentrations during a single measuring 
campaign (a) and measured concentrations during the first measuring hour with 
inversely estimated N2O concentrations and  N2O flux q(t) (b). 
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Fig. 3: Comparison of N2O fluxes obtained by the small-scale chamber and field-scale 
tunnel methods. 

 Reliability of the IMQ0 model was confirmed using site-
specific „virtual emission scenarios“ (Schäfer et al., 
2012)  

 IMQ0 flux estimation was succesfully applied to the 
experimental data (Figure 2b) 

 N2O fluxes measured by the tunnel were small at a 
typical positive background level, whereas chamber-
derived fluxes partly exhibited huge variability and slight 
N2O uptake (Figure 3a,b) 

 High emissions obtained by single chambers occurred 
after rainfall events, but this hot spot behaviour was 
obviously not representative for the field or tunnel scale 
 
 

 

Conclusions 
 N2O concentration measurements with the tunnel / 

FTIR set up are reliable, especially for dry, stable 
nocturnal conditions  

 The IMQ0 model predicts the unbiased, pre-
deployment N2O flux with a good accuracy  

 Field-scale tunnel method may serve as a gap-
filling technique between small-scale chamber and 
ecosystem-level micrometeorological methods 
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