

Evaluation of a closed tunnel for field-scale measurements of N₂O fluxes at the soil-atmosphere interface

K. Schäfer¹, J. Böttcher², <u>D. Weymann^{3*}</u>, C. von der Heide², and W.H.M. Duijnisveld⁴

¹Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, ²Leibniz University Hannover, Institute of Soil Science, ³Forschungszentrum Jülich GmbH, Agrosphere Institute, ⁴German Federal Institute for Geosciences and Natural Resources, Hannover *presenting author, e-mail: d.weymann@fz-juelich.de

Background & Objectives

Emissions of the powerful greenhouse gas nitrous oxide (N_2O) from soils are commonly highly variable in space. An upscaling of classical small-scale chamber measurements is thus questionable and adds uncertainty to emission inventories or empirical emission factors. Therefore, field-scale approaches will become increasingly important. Since micrometeorological tech-niques are often limited by stable atmospheric conditions and their low spatial resolution, we used a closed tunnel on an area of 500 m² equipped with an open-path Fourier Transform Infrared (FTIR) spectrometer and aimed to

- (i) evaluate its feasibility for measuring N_2O concentrations and calculating field-scale N_2O fluxes from an unfertilized grassland soil and
- (ii) compare those results with small-scale fluxes obtained from closed chamber measurements.

Tunnel experiment, chambers and flux calculation

- Measuring plot: unfertilized grassland on Gleyic Podzol in North Germany
- Tunnel: Aluminium liner structure (99 m × 5 m × 0.6 m), closed with a plastic cover for emission measurements (Figure 1a,b); N₂O concentration measurements by path-averaged Fourier transform infrared (FTIR) spectrometry

Fig. 1: The tunnel (a) with its dimensions and the FTIR unit (b), and the closed chambers (c) located at the same plot.

- Calculation of a predeployment N₂O flux Q₀ by inverse modelling (IMQ0) (Schäfer et al., 2012): 1D numerical model which takes into account specific tunnel geometry, N₂O diffusion from soil into the tunnel, N₂O diffusion within the tunnel atmosphere, N₂O detection by FTIR in 0.3 m above ground, and the diameter of the radiation beam (0.1 m)
- Concurrent small-scale (0.05 m²) chamber measurements in close vicinity to the tunnel; calculation of N₂O fluxes from four concentration measurements using the NDFE model (Livingston et al., 2006)

wledgement: We thank the German Research Foundation (DFG) borting this feasibility study.	DFG	Deutsche Forschungsgemeinschal

Results

- Combined tunnel / FTIR method enables precise, highdensity concentration measurements (about 12 per hr) during stable atmospheric conditions
- Measurements are biased by high wind speeds, heavy rain and sun radiation (Figure 2a)

Fig. 2: Representative time course of N₂O concentrations during a single measuring campaign (a) and measured concentrations during the first measuring hour with inversely estimated N₂O concentrations and N₂O flux q(t) (b).

- Reliability of the IMQ0 model was confirmed using sitespecific "virtual emission scenarios" (Schäfer et al., 2012)
- IMQ0 flux estimation was succesfully applied to the experimental data (Figure 2b)
- N₂O fluxes measured by the tunnel were small at a typical positive background level, whereas chamberderived fluxes partly exhibited huge variability and slight N₂O uptake (Figure 3a,b)
- High emissions obtained by single chambers occurred after rainfall events, but this hot spot behaviour was obviously not representative for the field or tunnel scale

Fig. 3: Comparison of $N_{\rm 2}O$ fluxes obtained by the small-scale chamber and field-scale tunnel methods.

Conclusions

- N₂O concentration measurements with the tunnel / FTIR set up are reliable, especially for dry, stable nocturnal conditions
- The IMQ0 model predicts the unbiased, predeployment N₂O flux with a good accuracy
- Field-scale tunnel method may serve as a gapfilling technique between small-scale chamber and ecosystem-level micrometeorological methods

References:

Livingston et al., (2006) Soil Sci. Soc. Am. J., 70, 1459-1469. Schäfer et al., (2012) paper in press, doi:10.2135/jeq2011.0475, J. Environ. Qual.

Ackno

for sur