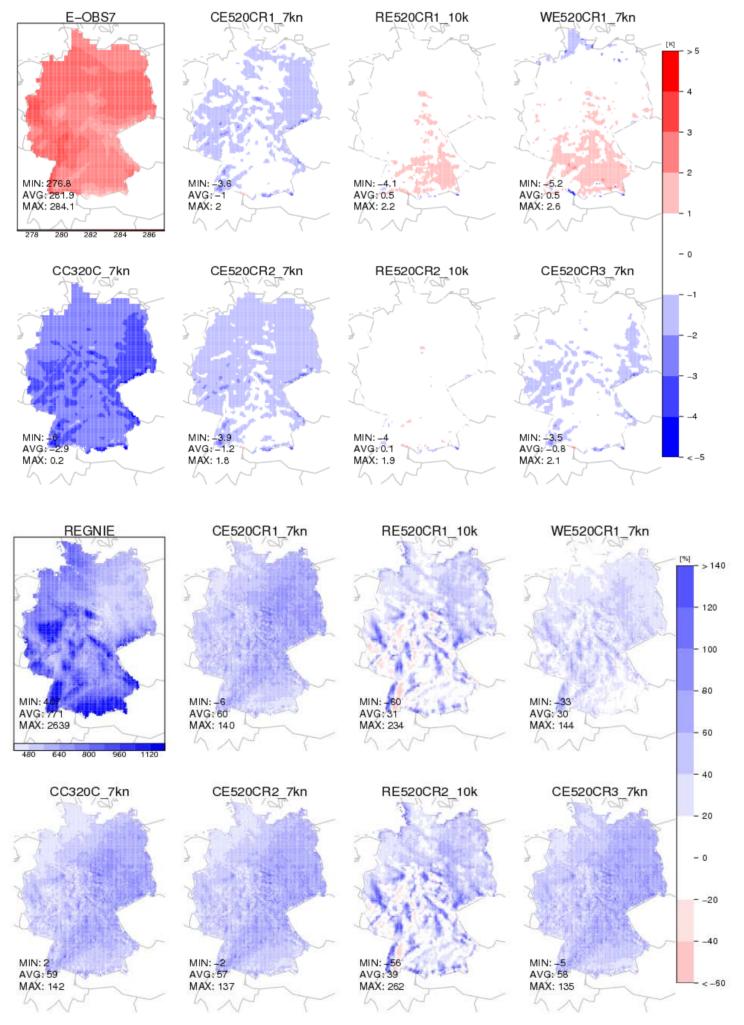
# 

## High resolution RCM simulations for Germany: validation and projected climate changes

(1) Institute of Meteorology and Climate Research, IMK-IFU, Garmisch-Partenkirchen, Germany; (2) Institute of Meteorology and Climate Research, IMK-TRO, Karlsruhe, Germany, (3) now at Swedish Meteorological and Hydrological Institute (SMHI), Norrkoepping, Sweden, (4) Chair for Regional Climate and Hydrology, University Augsburg, Augsburg, Germany

## Introduction


- Furthermore, the aspect of uncertainties of simulation results is crucial in this kind of impact studies.
- catchments in Germany.
- Figure 1); in addition REMO simulations within the projects "UBA" and "BFG are included (Jacob et al., 2007).

## **Results of high resolution RCM simulations: Projected climate changes** Validation

|           | DJF  | MAM  | JJA  | SON  | ANN  |
|-----------|------|------|------|------|------|
| CLM-E40   | -0.7 | -1.1 | -1.5 | -0.6 | -1.0 |
| WRF-E40   | -0.1 | 0.5  | 2.3  | 1.0  | 0.9  |
| CLM-E5R1  | -0.3 | -0.6 | -2.4 | -0.8 | -1.0 |
| REMO-E5R1 | -0.1 | 1.2  | 0.0  | 0.9  | 0.5  |
| WRF-E5R1  | 0.2  | 0.8  | 0.6  | 0.3  | 0.5  |
| CLM-E5R2  | -0.4 | -1.5 | -2.2 | -0.8 | -1.2 |
| REMO-E5R2 | -0.1 | 0.0. | -0.2 | 0.7  | 0.1  |
| CLM-E5R3  | 0.4  | -1.0 | 2.3  | -0.3 | -0.8 |
| CLM-C3    | -1.9 | -3.5 | -4.3 | -2.0 | -2.9 |

|           | DJF | MAM | JJA | SON | ANN |
|-----------|-----|-----|-----|-----|-----|
| CLM-E40   | 47  | 51  | 20  | 33  | 36  |
| WRF-E40   | 37  | 29  | -8  | 8   | 14  |
| CLM-E5R1  | 76  | 62  | 48  | 61  | 60  |
| REMO-E5R1 | 73  | 21  | 27  | 10  | 31  |
| WRF-E5R1  | 54  | 25  | 19  | 29  | 30  |
| CLM-E5R2  | 70  | 60  | 54  | 63  | 57  |
| REMO-E5R2 | 83  | 33  | 32  | 19  | 39  |
| CLM-E5R3  | 68  | 65  | 44  | 60  | 58  |
| CLM-C3    | 68  | 59  | 58  | 54  | 59  |

**Table 1:** Fine nest seasonal and annual
 mean temperature bias [K] (top) and relative precipitation bias [%] (bottom) averaged over Germany between 1971 to 2000.



**Figure 3:** Difference map of annual temperature [K] in comparison to E-OBS data set (top) and relative bias in precipitation [%] compared to the REGNIE data set (bottom) for all ensemble members.

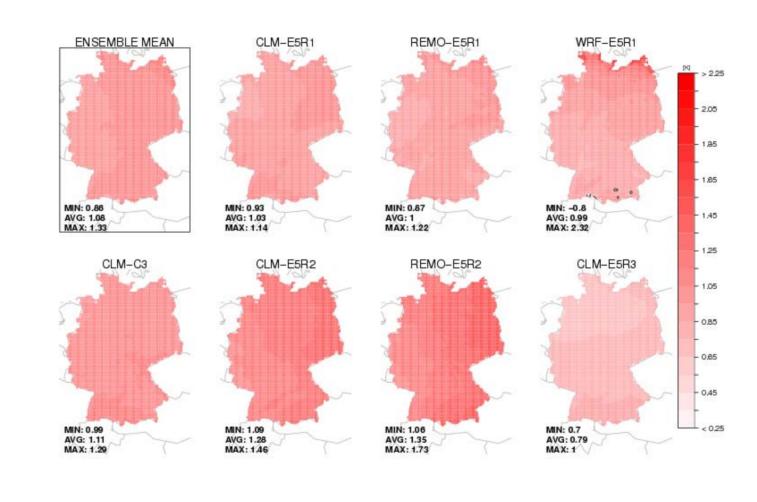
#### **References:**

• Berg, P., Wagner, S., Kunstmann, H., Schädler, G., 2011. High resolution RCM simulations for Germany: Part I - validation. Clim. Dyn. submitted October 2011. • Schädler, G., Berg, P., Düthmann, D., Feldmann, H., Ihringer, J., Kunstmann, H., Liebert, J., Merz, B., Ott, I., Wagner, S., 2012: Flood hazard in a changing climate. CEDIM-report, (http://www.cedim.de/download/Flood Hazards in a Changing limate.pdf) • Wagner, S., Berg, P., Schädler, G., Kunstmann, H., 2011. High resolution RCM simulations for Germany: Part II - projected climate changes. Clim. Dyn. submitted October 2011.

KIT – KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

## EGU2012-11221

S. Wagner (1), P. Berg (2,3), G. Schaedler (2), H. Kunstmann (1,4)


• An increased variability in precipitation and temperature for the warming future climate is expected, which requires very often adaptation strategies for e.g. infrastructure

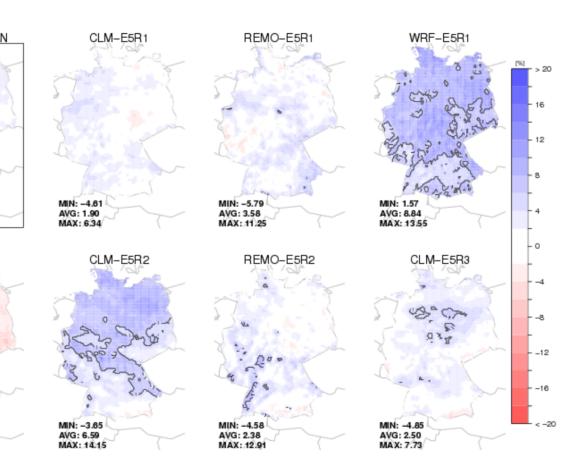
• For the development of adaptation strategies usually climate impact studies on a regional scale are performed, which require high resolution RCM simulations results

• In this study, ensembles of coupled climate-runoff simulations are performed for the assessment of changes in flood hazard for small and medium sized river

• Our ensemble includes 2 GCMs (ECHAM5, CCCma3) and for one GCM (ECHAM5) three realizations with different initial conditions, 2 RMCs (CCLM, WRF) with a final spatial resolution of 7km and 1 hour output timestep to provide climate input data for hydrological modelling of small and medium sized catchments in Germany (see

#### 0.2 CLM-E5R1 1.4 1.5 1.0 1.1 REMO-E5R<sup>2</sup> 0.2 1.6 0.9 1.2 1.0 0.6 WRF-E5R1 0.3 1.0 1.6 1.4 1.9 CLM-E5R2 1.0 0.7 1.5 1.3 REMO-E5R2 2.0 1.0 0.9 1.6 1.3 CLM-E5R3 0.7 0.7 0.8 1.0 0.8 1.3 1.1 0.9 1.2 CLM-C3 1.0 ENS mean ENS sd




|           | DJF  | MAM  | JJA  | SON  | ANN  |
|-----------|------|------|------|------|------|
| CLM-E5R1  | 1.3  | 5.0  | -7.9 | 9.3  | 1.9  |
| REMO-E5R1 | -8.1 | 9.1  | -1.6 | 14.9 | 3.6  |
| WRF-E5R1  | 0.4  | 15.9 | 6.2  | 12.9 | 8.8  |
| CLM-E5R2  | 12.3 | 12.8 | -0.6 | 1.8  | 6.6  |
| REMO-E5R2 | -4.2 | 8.7  | 3.7  | 1.4  | 2.4  |
| CLM-E5R3  | 9.6  | -0.7 | -5.0 | 6.0  | 2.5  |
| CLM-C3    | -3.7 | 6.8  | -8.9 | -1.6 | -1.9 |
| ENS mean  | 1.1  | 8.2  | -2   | 6.4  | 3.4  |
| ENS sd    | 7.5  | 5.4  | 5.7  | 6.2  | 3.5  |

**Table 2:** Projected fine nest seasonal and
 annual mean temperature changes [K] (top) and relative precipitation changes [%] (bottom) averaged over Germany between 1971 to 2000 and 2021 to 2050. Numbers in bold font are statistically significant at the 95% confidence interval.

Figure 4: Projected annual mean temperature change [K] (top) and annual precipitation change [%] (bottom) between 1971 to 2000 and 2021 to 2050 for all ensemble members and the ensemble mean; contours delineate significant and nonsignificant regions at the 95% confidence interval. Note, that for temperature almost all regions are significant.







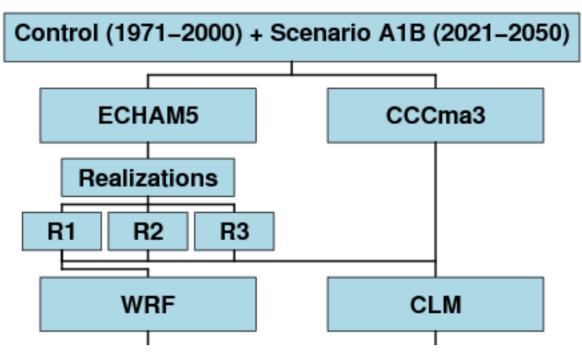



Figure 1: Schematic over the ensemble simulations strategy.

## **Conclusions:**

### Validation of RCM results:

- GCM biases are transferred to RCMs
- coarse nest are transferred to fine nest
- CLM model adds a cold and wet bias throughout the domains
- Europe
- and an added value to precipitation intensity distribution.

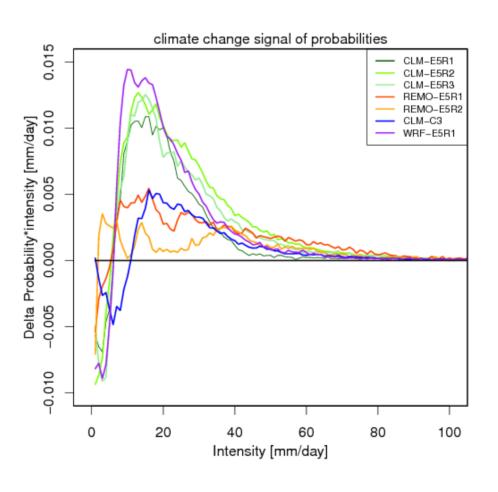
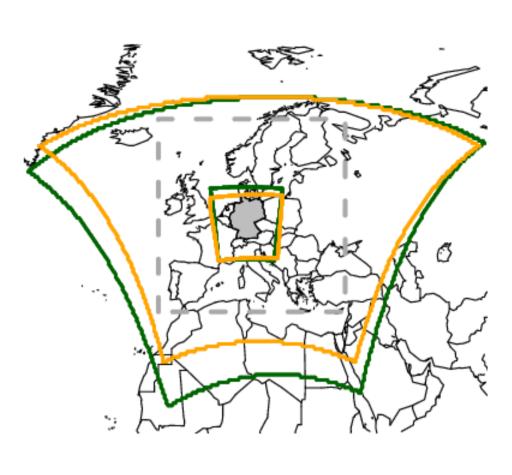



Figure 5: Projected change of precipitation PDFs over Germany between 1971 to 2000 and 2021 to 2050 for all ensemble members

www.cedim.de


MIN: -8.61 AVG: -1.85 MAX: 4.32





elmholtz Centre

POTSDAM



**Figure 2:** RCM double nesting strategy for CCLM (green) and WRF (orange)

• RCM biases do not add up with further nesting in this study, i.e. biases from

• WRF adds a lower mean bias for temperature and precipitation for most of

• Benefit of fine nest (7km) simulations: bringing high detail in spatial patterns

#### Climate Change Signals:

• All GCMs project a warming over Europe and an increase of annual precipitation in northern and a decrease in southern Europe.

• RCMs results tend to less warming compared to GCMs.

• The impact of the RCM on the climate change signal is more dominant for precipitation compared to temperature.

• The significance tests show a robust temperature increase for the ensemble.

• For precipitation the projected changes are not robust.

•Despite the different biases of the RCMs, the range of projected climate change signals for temperature and precipitation are much closer.

> **Contact:** Sven Wagner IMK-IFU, KIT Kreuzeckbahnstr. 19 82467 Garmisch-Partenkirchen Germany Email: sven.wagner@kit.edu