

Surface characteristics and wettability of magnetron-sputtered oxygen containing amorphous carbon (a-C:O) thin films

SEM and AFM analysis

+30 n 5 μm 3 150 nm

 $R_{o} = 6.6 \text{ nm}$

R_z = 21,9 nm

 $R_{t} = 24.4 \text{ nm}$

150 nm

. 5 μm

1 2

1 µm

Φ_{O2}= 4 vol%

Φ₀₂= 8 vol%

M.Stüber¹, F.Danneil¹, M.Rinke¹, S.Ulrich¹, A.Welle², E.Lewin³, U.Jansson⁴

¹ Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), D-76021 Karlsruhe (Germany)

² Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), D-76021 Karlsruhe (Germany)

³ EMPA Swiss Federal Laboratories for Materials Testing and Research, CH-8600 Dübendorf (Switzerland)

 $\Phi_{co} = 2 \text{ vol}\%$

substrate

Φ₀₂=6 vol%

⁴ Department of Materials Chemistry, Uppsala University, SE-75121 Uppsala (Sweden)

Motivation & Approach

Amorphous carbon coatings are of interest for bio-functional, biological or engineering applications. Their wetting behaviour can be influenced by plasma-chemical in-situ modification during deposition in H_2 , N_2 , O_2 and Si-containing atmospheres. We report on novel oxygen containing amorphous carbon (a-C:O) coatings. The O-content of the coatings was systematically varied by utilizing different values of the O2 gas flow.

Characterization of the a-C:O coatings:

Constitution and bonding structure by SEM, XPS, and Raman spectroscopy (at two wavelengths, \u03c4=514.5 nm and 325 nm).

Indentation hardness, Young's modulus and residual stress

Surface topography analysis by AFM

Wettability: contact angle measurements with different test liquids; calculation of the surface free energy.

The correlation of the properties measured, especially of the wettability and surface free energy, with the constitution and **bonding structure of the coatings** is discussed. A significant influence of the O₂ gas flow on these properties is presented.

a-C:O deposition

XPS analysis: surface and bulk

Dynamic contact angle measurement

Test liquid: distilled water Dist. water, Formamide, Benzyl alcohol 100 contact angle in degree adva ncing 50 polar fraction of surface energy 80 receding 40 60 30 20 40 mN/m 10 20 0 0 2 6 8 . Φ₀₂ in vol% 0 2 4 6 8 Φ_{02} in vol%

Mechanical properties

1 µm

1 µm

150 nm

5 µm 3 ⁴

R_a = 6,6 nm

 $R_{2} = 63.3 \text{ nm}$

R₁ = 73,2 nm

‡50 nm

450 n 5 μm 1 2 3

R_a = 9,0 nm

R₇ = 79,5 nm

R, = 87,5 nm

2 1

Φ_{02} in vol% **Summary & Conclusions**

With increasing gas flow $\Phi_{\rm O2}$ the a-C:O coatings show **distinct features**. The O_2 gas flow correlates well with coatings properties

- increasing O content in bulk (up to 8 at.%) - fraction of sp3 hybridized C atoms decreases
- sp² cluster size increases
- formation of ring structures favoured
- smooth surfaces, but Rt value increases
- mechanical properties deteriorate
- reduced contact angles
- polar fraction of surface energy increases

O content to be limited - advanced surface properties through ion bombardment, modified plasma chemistry and/or micro-patterning.

KIT - University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association