

Road to Reliability-**Quality Improvements in Powder Injection Molding**

T. Müller*,**, T. Hanemann**, V. Piotter*, K. Plewa*

*Laboratory for Materials Process Technology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany ** Institute for Applied Materials, Karlsruhe Institute of Technology, Germanyermany

Mechanical Properties

Concept

Improving mechanical properties by influencing the base material:

- Binder composition
- Powder loading

Curing of defects at the surface of the specimen by adjusting of posttreatment (debinding and sintering):

Experiments

Variation of binder composition of ZrO2-feedstocks by:

- Additiv type
- Additiv content
- Polymer : wax ratio

Fabrication of micro-bending specimen:

- - Only thermal debinding

Measuring of flexural strength

Introduction

PIM as a fast growing, high output

productions methods still faces challenges in maintaining high quality products

regarding

- Reproducability
- Mechanical behaviour

This work is focussing on the investigation on the influence of production parameters as well as material compositions on these properties.

Results

Table 1: Comparison of flexural strength of ZrO2 in "As fired" state

→ Smoothing of low profile surface defects without noteworthy rounding of edges $(r = 0.1 - 0.5 \mu m)$

17-4PH	± 0.3 %	±0.06 %
ZrO ₂	± 0.1 %	± 0.05 %

Conclusion

Both dimensional accuracy and specimen strength were increased by conducted methods. A thorough selection of molding parameters as well as feedstock/binder composition is crucial for high quality PIM.

Dimensional stability

Concept

Investigation of

- Molding parameters
- Feedstock composition

and their influence on the dimensional stability and repeatability in PIM.

Experiments

I) Variation of parameters using special tool design with two moving pistons (Ceramic feedstock):

Measurement of diameter (cylindrical specimen) using laser micrometer

References

[1] R.M. German, Metal Injection Molding: A Comprehensive MIM Design Guide, 2011

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding of SFB499 and all colleagues at the KIT for their support concerning this work.

