Road to Reliability - Quality Improvements in Powder Injection Molding

T. Müller*,**, T. Hanemann**, V. Piotter*, K. Plewa*

*Laboratory for Materials Process Technology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany
** Institute for Applied Materials, Karlsruhe Institute of Technology, Germany

Mechanical Properties

Concept
Improving mechanical properties by influencing the base material:
- Binder composition
- Powder loading

Curing of defects at the surface of the specimen by adjusting of post-treatment (debinding and sintering):

Experiments
Variation of binder composition of ZrO₂-feedstocks by:
- Additive type
- Additive content
- Polymer : wax ratio

Fabrication of micro-bending specimen:

Post-processing by either:
- Chemical and thermal debinding
- Only thermal debinding

Measuring of flexural strength

Introduction

PIM as a fast growing, high output productions methods still faces challenges in maintaining high quality products regarding
- Reproducability
- Mechanical behaviour

This work is focussing on the investigation on the influence of production parameters as well as material compositions on these properties.

Results

Table 1: Comparison of flexural strength of ZrO₂ in "As fired" state

<table>
<thead>
<tr>
<th>Material</th>
<th>Literature [L] vs. Study [S]</th>
<th>Flexural strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean value [L]</td>
<td>≈ 900 GPa</td>
<td>Mean value [S]</td>
</tr>
<tr>
<td>Max. value [S]</td>
<td>≈ 3000 GPa</td>
<td></td>
</tr>
</tbody>
</table>

→ Smoothing of low profile surface defects without noteworthy rounding of edges ($r = 0.1 – 0.5 \, \mu m$)

Table 2: Comparison of standard deviations of powder injection molded parts (literature vs. experiments)

<table>
<thead>
<tr>
<th>Material</th>
<th>Literature [L]</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-4PH</td>
<td>± 0.3 %</td>
<td>± 0.06 %</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>± 0.1 %</td>
<td>± 0.05 %</td>
</tr>
</tbody>
</table>

Conclusion

Both dimensional accuracy and specimen strength were increased by conducted methods. A thorough selection of molding parameters as well as feedstock/binder composition is crucial for high quality PIM.

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding of SFB499 and all colleagues at the KIT for their support concerning this work.

References