

Micro Defects? **Try Powder Injection Compression Moulding!**

E. Honza* **, M. Kruchem*, K. Plewa*, V. Piotter *, T. Hanemann* **

*Karlsruhe Institute of Technology (KIT), Institute for Applied Materials - Material Process Technology, Germany ** Laboratory for Materials Process Technology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany

Summary

- > Successful implementation of the simultaneous micro injection compression moulding for powder materials (using the example of zirconium feedstock)
- > First significant process parameters were determined
- > Obvious improvement of the replication of micro structure, especially near to the gat
- Micro structure with high quality potential by powder injection compression moulding

Process cycle of simultaneous Injection Compression Moulding

2. Melt injection into a cavity (80-90% cavity volume)

3. Compression by clamping movement of the machine

4. Cooling, opening and ejection

Performing of simultaneous micro powder injection compression moulding (µ-PICM)

- > Mould with shearing edges
- > Commercial injection moulding machine (ARBURG® Allrounder 420C)
- > Design of Experiments (DoE): full two-level four-factorial (24)

Process parameter	Low level	High level
Compression force [kN]	200	400
Compression speed [mm/s]	1	3
Compression starting time [s] after injection of feedstock	0.5	0.7
Holding time [s]	1	2

- > Investigation of replication quality especially in the area with micro structures of high aspect ratio
- Qualitative rating by use of binary evaluation and arithmetic average of each structure
- > Influence of the position of micro structure (near and far to the gate)

Reproduction results of micro structure & conclusions

Sintered parts

> clear improvement of the replication by μ-PICM

direction of feedstock and cool down of feedstock

compression process of already cooling feedstock

> wrinkle in the bottom of the structure as a result of

> reasons for worse replication near to the gate at

μ-PIM: structure in shadow position to flow

could be detected near to the gate

- > quality of the micro structures advanced significantly with increasing compression force and compression speed
- > holding time of the compression force with small influence
- > starting time of the compression: uninvited effect on the structure quality → freezing of the feedstock especially near to the gate at later starting of the compression step cause unfilled micro structure

- > filling of the structure in selected areas is considerably superior with micro powder injection compression moulding (µ-PICM)
- > sintered parts: crack in unfilled area at injection moulded micro structure grew at necessary heat treatment
- > replication accuracy of one selected area at μ-PICM minor declines with distance to the gate

