

Karlsruhe Institute of Technology

Institute for Applied Materials

In situ X-ray diffraction studies of Fe/F co-doped LiNi_{0.5}Mn_{1.5}O₄ spinel cathodes

H. Geßwein, S. Glatthaar, R. Moenig. S. Doyle, J. R. Binder

- X-ray beam size 500x250 μ m², λ = 0.8853 Å
- Data collection time 30 s per diffraction pattern

Results

Structural changes during discharge/charge processes

Electrochemical Li (de)intercalation reaction:

= $LiNi_{0.4}Mn_{1.5}Fe_{0.1}O_4$

• $LiNi_{0.5}Mn_{1.4}Fe_{0.1}O_{3.8}F_{0.2}$

www.kit.edu

• $LiMn_2O_4$: SG *Fd-3m* • $Li_2Mn_2O_4$: SG $I4_1/amd$

• γ -MnO₂ $\stackrel{4V}{\leftrightarrow}$ LiMn₂O₄ $\stackrel{3V}{\leftrightarrow}$ Li₂Mn₂O₄

Spinel crystal structures

SXRD is a powerful tool for *in situ* studies of Li ion batteries. XRD can monitor phase evolution, change of lattice parameters, Conclusions microstructure and long range order.

- Cation and/or anion substitution in lithium manganese oxide based spinel materials greatly affects the electrochemistry and cycle behaviour of the cathode. Fluoride substitution changes phase behaviour in the 4 - 5 V region.
- Fluoride substitution induces partial supression of the tetragonal Jahn-Teller distortion and a reduction of strain in the structure (<c/a).</p>

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association