

Karlsruhe Institute of Technology Institute of Functional Interfaces

Formation and spectroscopic analysis of conditioning films on self assembled monolayers

I.Thomé^{1*}, M. E. Pettitt², M. E. Callow², J.A. Callow², M. Grunze^{1,3} and A. Rosenhahn^{1,3}

¹ Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, PO Box 3640, 76021 Karlsruhe, Germany

² School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

³ Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany

Biofouling

- undesired growth of marine organisms on submerged structures and devices
- ubiquitously occurring phenomenon in intertidal zones worldwide [1]
- world fleet fuel consumption is 300 million tonnes higher due to fouling-induced rise in drag [2] • to reduce the negative impact of biofouling, suitable non-toxic coatings for the marine
- environment are required
- our approach is to derive design rules for non-fouling coatings from well defined model surfaces with different surface chemistries and morphologies [3]

Self-assembled monolayers (SAMs)

- providing access to highly controlled surface chemistries
- fine tuning of physicochemical surface properties
- highly versatile tools to create defined thin organic films
- changing the surface chemistry without affecting the morphology or its elastic modulus
- easy to prepare

- PEG

• reflection plane is defined by incident and reflected beam • p-polarized light: polarization direction parallel to reflection plane

- s-polarized light: polarization direction perpendicular to reflection plane
- only p-polarized light is absorbed by thin layers on metal substrates
- only molecules with perpendicular dipole change to surface interact with incoming light
- strongest absorption is theoretically given by an angle of incidence of 80°

C

• only spore water shows film accumulation of proteins

• all other types of seawater show slightly accumulation of proteins

conditioning film is enhanced by traces of macromolecules, which are released from swimming spores kept suspended for 1 h

~1122-1343 cm⁻¹, CH₂ peaks: ~2888 cm⁻¹) disappear but the surface stays free of proteins chemically different samples in 'spore water' show accumulation of amide containing macromolecules, e.g. proteins (amid I (~1750 cm⁻¹) and amid II (~1650 cm⁻¹) bands) • intensity of SAM peaks (~ 2888 cm⁻¹) remains unchanged

significant conditioning is established after ~24 hours

a) amid bands after 48 hours, b) calculated intensities of amid bands..

How does the time scale for conditioning and settlement of spores correlate?

Kinetic studies \rightarrow DDT \rightarrow HUDT \rightarrow AUDT \rightarrow FUDT \rightarrow PEG b) a) 3000 2500 2500 2 [mm] 2000 2000 -1500 es 1500 1000 Time point where PEG surface starts eteriorating

time [h] Kinetics of settlement of zoospores of Ulva on chemically different surfaces over a total duration of 36 h.

a) Initial time up to 2 hours, the area in grey represents the usual time for a spore assay b) settlement of spores up to a total settlement time of 36 h.

settlement (except on PEG) saturates at approximately the same value after ~20 h • at an essay time of 60 min the surfaces' coverage is best distinguishable

• PEG 2000-OH surface is resistant against spore settlement for about 10 hours before degradation changes the surface properties

 settlement could be combined effect of surface chemistry and formation of a conditioning layer

occurs on similar timescales • but reaction rate is different k_{SP} =0.950 h⁻¹ and k_{Cond} =0.051 h⁻¹ \rightarrow Spore settlement is much faster then conditioning of surface

To which extend does the conditioning of a surface change the attachment rate during the settlement phase?

- FUDT (blank) - DDT (SP) - HUDT (SP)
- for hydrophobic surfaces incubation leads to decrease in spore density
- for hydrophilic surfaces the settlement density is growing with pre-incubation time
- pre-incubation with 'spore water' influences spore settlement already before the conditioning film is fully established
- reason is change of surface properties as a result from adsorption of proteins and other dissolved organic carbons (DOC)

Settlement density of Ulva spores on SAMs after varying durations of pre-incubation in either spore water (SP, solid lines) or without pre-incubation (blank, dotted lines).

• this DOC add layer deters spores from settling, e.g. by changing physical spore-surface

interaction as a consequence of reducing surface energy

• distribution of settled spores changes from gregarious (clumped) to single spores and

small groups with exposure to the conditioning solution

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Isabel.Thome@kit.edu

