Inkjet Printed BST Thick-Films for X-Band Phase Shifter and Phased Array Applications

TECHNISCHE UNIVERSITÄT DARMSTADT

M. Nikfalazar, M. Sazegar, A. Friederich, C. Kohler, Y. Zheng, A. Wiens, J.R. Binder, R. Jakoby

Motivation	Antennas	\bigtriangledown	Ferroelectric material:							
 The phased array antenna consists of: Feeding network 	Phase Shifters	(ϕ)	\bigcirc	(ϕ)	Ø	Ø	(ϕ)	Ø	Ø	Barium-Strontium-Titanate (BST) Low power consumption
Phase shiftersAntennas	Feeding Lines]		 High tuning speed High linearity
	Transmitters/Receiver						er		• Adequate dielectric loss	

- System performance is depended on the insertion loss of the feeding network and the phase shifters
- A tunable compact phase shifter can reduce the total size
- The kernel elements in the phase shifters are varactors
- Different technologies to fabricate tunable varactors: semiconductor, MEMS, ferroelectric, liquid crystal and ferrite

Inkjet Printing of BST

Inkjet printing technology:

- Selective printing of BST material
- Flexible fabrication process
- Simultaneous multi material printing option
- Single nozzle printhead with 100µm orifice diameter

BST material Characterization by IDC

- Interdigital capacitors (IDC) measured by on-wafer probes
- The permittivity of the material changes from 220 (0V) to 140 (200V)
- By applying 20 V/µm a maximum tunability is 35%

Simulation & Measurement

Simulation:

- The phase shifter designed for the frequency range of 8-10 GHz
- Agilent ADS simulation tool is used
- The tunable capacitors are designed on a substrate consisting of BST layer on top of an aluminum oxide substrate
- The permittivity of the BST layer changes between 220 to 140
- The gap width of the capacitors is 10µm
- Insertion loss decreases with the change in permittivity
- The transmitted phase can be tuned continuously

On-Wafer measurements results:

- Measurement in a 50 Ω system
- Tuning voltage applied by using Bias-T
- Tuning Voltage changed between 0 to 200 V
- The achieved phase shift at 10 GHz was 175° with a FoM of 20°/dB
- Higher losses than expected

Phase Shifter Realization

- Single photolithography process
- Top electrode: 2µm Gold by electroplating
- The BST strips have a thickness of 2.1µm and width of 300µm on top of an aluminum oxide with 635µm thickness
- •The BST thick-film is printed at the areas beneath the interdigital capacitors
- Each phase shifter has 9 unit cells, each unit consist of two tunable capacitors
- The capacitance of the first unit cell at the input and output were chosen Conclusion smaller for better matching

Inkjet printing BST thick-film

• A new method for tunable microwave components Realization of a loaded line phase shifter

• The fabricated prototype exhibits a compact size (8mm × 6mm) • Low current consumption (less than 0.1mA)

Further Work

- Increase FoM
- Loss factor of the BST has to be reduced
- Using metal-insulator-metal capacitors
- Reduce the biasing voltage
- Increase the tunability

Technische Universität Darmstadt | Institut für Mikrowellentechnik und Photonik | Mohammad Nikfalazar | nikfalazar@imp.tu-darmstadt.de