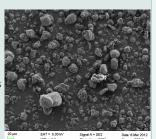


Institut für Angewandte Materialien Werkstoffprozesstechnik

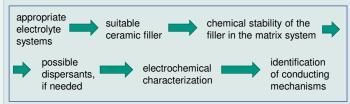
Ceramic fillers in Li-Ion Battery Electrolytes


Andreas Hofmann*, Stephanie Borchers*, Michael Schulz*, Thomas Hanemann*,**

- * Karlsruher Institut für Technologie, Institut für Angewandte Materialien Werkstoffprozesstechnik, Karlsruhe, Germany
- Andreas Hofmann, e-mail: andreas.hofmann2@kit.edu, Tel. +49 (0)721-608-25920

 Universität Freiburg, Lehrstuhl für Werkstoffprozesstechnik, Institut für Mikrosystemtechnik (IMTEK), Freiburg, Germany

Summary


- Only partial dispersion stability of fillers in liquid electrolytes
- Very good dispersion stability in polymer gel electrolytes
- Particle containing gel electrolytes with optimal electrochemical properties and processability

Motivation

- Utilization of particles as additional lithium source
- Enabling of additional Li-transport mechanisms
- Enhancing of Li diffusion constants
- Saving of expensive electrolytes

Strategy

Properties of filler materials and dispersants

Selection of fillers:

- Availability and toxicity
- Beneficial effects
- Processability
- Lithium content
- Double content
- Particle surface and particle size
- Price

- Selection of dispersants:
- Availability and toxicity
- Processability
- Solubility in battery electrolytes/solvents
- Surface chemistry
- Electrochemical stability
- Price

	Specific surface	Particle size	Particle size	
Filler	(measured)	(manufacturer)	(measured)	
	m² g-1	[µm]	[µm]	
Aluminiumoxid (Al ₂ O ₃)	134,8	0,05	2,9 ± 1,1	
Zirkoniumdioxid (ZrO ₂)	9,0	0,03	7.8 ± 2.9	
Bariumtitanat (BaTiO ₃)	9,3	0,1	0,15 ± 0,22 10,1 ± 11,8	
Lithiumorthosilikat (Li ₄ SiO ₄)	3,1	149	11,5 ± 7,9	
Lithiumaluminiumoxid (LiAIO ₂)	9,6	110	35,1 ± 18,5	

Stabilization of fillers

Steric stabilization

stabilization stabilization

- Long-term stabilization in liquid electrolytes difficult
- Ligand exchange reactions on the surface of particles possible

Stabilization in liquid electrolytes

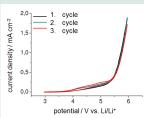
- System: Dispersant + ceramic filler + propylene carbonate
- · Aim: Long-term stability in electrolyte solvents
- Proof: Visual observation and UV-Vis measurement

Dispersant	Al ₂ O ₃	LiAIO ₂	Li ₄ SiO ₄	BaTiO ₃	ZrO ₂
Glycanate	++	-		+	
Polyvinylpyrrolidon K17 (PVP K17)	+++	-		+	
Polyethylenglykol (n=200)	++	-		+	
Polyethylenglykolethylether- methacrylate (n=246)	++	-		+	
Triethylcitrate	++	-		+	
Acetyltributylcitrate	++	-		+	

- Strong relationship between particle size and dispersion stability
- Only moderate stability is obtained
- +++ no sedimentation for at least 60 h ++ sedimentation after 48 h
- + sedimentation after 12 h
- sedimentation after 30 min

Stabilization in gel polymer electrolytes

- Stabilization in gel polymer electrolytes is obtained by using appropriate gel polymer matrices (PVdF-HFP and polymethylmethacrylate)
- A filler content up to several % inorganic particles can be reached
- Conducting salts: LiPF₆, lithium bis(trifluoromethanesulfonyl)azanide, LiBE


A gel polymer electrolyte based on PVdF-HFP (including liquids and conducting salts)

A gel polymer electrolyte based on PVdF-HFP with ceramic particles (Al₂O₃; including liquids and conducting salts)

Electrochemical Properties

- Water content has to be considered (< 20 ppm)
- Use of ionic liquids enables afterprocessing-drying
- Electrochemical stability up to 4 5 V vs. Li/Li⁺ (Pt vs. Li/Li)
- Specific conductivity: ~ 1 mS cm⁻¹ in dependence of composition

Conclusions

- In liquid electrolytes, the preparation of particle-filled is challenging
- Very good processability of selected fillers in gel polymer electrolyte matrices (polymer, liquid phase, and conducting salt)
- Particle size is crucial for stabilization and processability
- Accurate electrochemical properties of particle-filled polymer electrolytes

Acknowledgements

This work was supported within the Helmholtz Research Programme NANOMICRO: Science, Technology, Systems. We acknowledge loLiTec lonic Liquids Technologies GmbH for kindly providing ionic liquids. We acknowledge Martin Tosoni for helpful discussion.