
A simplified model for O2 transport and reduction

kinetics in porous cathodes of Li-O cells

Introduction
Todays Li-O cells suffer a number of inconveniences. However, their investigation is justified by the very high theoretical energy density of 
the Li-O – system.  Performance determining processes are mainly oxygen transport and reaction kinetics. This work is comprised of two
main parts to approach these issues:

1) A cell design approach to actively enrich the electrolyte with O2 and find out about possible differences/improvements compared to 
passive O2 supply. The idea is to improve the performance by increasing the O2 concentration in the electrolyte. For this purpose a 2-
mode cell was constructed allowing for the supply of O2 to the cathode in two ways. Either exchanging an inert gas (e.g. Ar) for O2 above
the cathode (classic way = passive mode) or using a 2-channel curly structure to push oxygen directly into the cathode (active mode).

2) Development of a simplified model to quantitatively describe measured discharge curves. The model allows isolated study of the most
important processes influencing the cell performance. Its behaviour is governed by a small set of parameters that correlate to physical
quantities.

Model scope
Included:
- Absorption of O2

- Diffusive transport of O2

- Kinetics of O2 reduction reaction
- Passivation of the active cathode surface (BET)
- SOC-effect on O2 transport (pore clogging)

Not included:
- All aspects of Li – transport
- Thermodynamics
- Recharging
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Model equations / Model sketch
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Quantities:

c .. concentration
v .. volume fraction
k .. heterog. rate coefficient of ORR
σ .. volume specific BET – surface
Deff .. effective diffusion coefficient
d .. maximum layer thickness of Li2O2

Sublabels:
O2 .. oxygen
Li2O2 .. lithium peroxide
elyt .. electrolyte
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O2 - Transport / Consumption:

Li2O2 – Production:

Li2O2 – concentration � volume fraction

Active surface:

Results: Passive vs. Active

Anode:
● Lithium (Chemetal)

Cathode:

● Gas-diffusion layer – GDL (250µm) H2315 (Freudenberg)
● GDL-Material: carbon fibers (Ø ≈ 10µm) - nonwoven fabric

vol. spec. surface: σ ≈ 2,6·105 m2/m3

● Micro-porous layer – MPL (~30µm) H2315 C4 (Freudenberg)
● MPL-Material: carbon black, PTFE binder

vol. spec. surface: σ ≈ 4,8·107 m2/m3

Electrolyte:
● 0.25M LiTFSI in  PP13TFSI  (ionic liquid)

exchange
of gases in

volume Vvoid

Ar � O2

GDL                 MPL
REM of cathode material

Cell design
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Realization in the laboratory

Massflow control
unit

Cell

Massflows

oxygen
flow

passive mode

active mode

Assumed discharge reaction path: O2 + e- � O2
- | Li+ + O2

- � LiO2 | 2LiO2 � Li2O2 + O2
slowest reaction follow up reactions are fast and not considered in model equations

� rate determining
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● Plateau – Rayleigh instability:
→ Electrolyte is displaced first at one certain location

● Build up of a shortcut for oxygen flow
→ Pressure drop in inlet channel
→ Decreased O2 supply

Measurement method: Chronoamperometry

• Potential is applied at which cell should get discharged
� without O2: initial decaying current (not shown)

• After initial current decayed: O2 supply is started

Direct view on 2-channel curly structure

inlet O2

(indicated
by red bar)

outlet

Cross section of 2-channel
curly structure

Device in Laboratory

GDL Cathode Material:
Freudenberg H2315
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Application of model:
Unknown parameters
are systematically varied
until a suitable fit curve
is obtained (refinement)

@ 2.2V

@ 2.0V

Discharge:

xx

O2 – concentration: Current density distribution:

x x

Passive vs. active mode

Observation: Performance
better in passive mode

Rate constant k 

behaves according to Tafel law

( )kln~η−

OCV
EE −=η

measured
simulated

discharged @2.4V

discharged @2.2V

discharged @2.0V

shoulder

Conclusions

● Active mode has contrary effect � no performance improvement over passive mode
● Simple mathematical model covers basics of chronoamperometry method

- crucial parameters correspond to physical quantities
- fitting possible ( but requires long time or fast computing )

● Shoulder at high rate discharge (2.0V) indicates transition from rate- to diffusion limited behaviour
- O2 is consumed faster than it is transported across the cathode depth

● Better overall understanding of inner working
- Variation of single parameters to identify perfomance limiting quantities
- Find redundant quantities (e.g. to save material � cost)

Fit values found for GDL discharge at 2.4V:

α = 1 mm/s
kH,cp = 0.07 mol/(m3·atm) 
Deff = 1·10-8 m2/s
k1 = 0.00044 mm/s
d = 0.55 nm (fit value)

d = 0.7 nm (calculated)

Comparable Values for Deff:

DMSO: 1.67·10-9 m2/s
MeCN: 4.64·10-10 m2/s
DME: 1.22·10-9 m2/s

Laoire 2010,J. Phys. Chem. 114, 9178-9186

Simulation (for passive mode)Materials

Cathode: GDL only
Model „predicts“ measured curves by changing k

GDL values maintained
Only MPL values varied

Cathode: GDL+MPL

Cathode: GDL


