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Introduction

Todays Li-O cells suffer a number of inconveniences. However, their investigation is justified by the very high theoretical energy density of
the Li-O — system. Performance determining processes are mainly oxygen transport and reaction kinetics. This work is comprised of two
main parts to approach these issues:

Model scope

Included:

- Absorption of O,

- Diffusive transport of O,

- Kinetics of O, reduction reaction

- Passivation of the active cathode surface (BET)
- SOC-effect on O, transport (pore clogging)

1) A cell design approach to actively enrich the electrolyte with O, and find out about possible differences/improvements compared to
passive O, supply. The idea is to improve the performance by increasing the O, concentration in the electrolyte. For this purpose a 2-
mode cell was constructed allowing for the supply of O, to the cathode in two ways. Either exchanging an inert gas (e.g. Ar) for O, above
the cathode (classic way = passive mode) or using a 2-channel curly structure to push oxygen directly into the cathode (active mode). Not included:

- All aspects of Li — transport
- Thermodynamics

- Recharging

2) Development of a simplified model to quantitatively describe measured discharge curves. The model allows isolated study of the most
iImportant processes influencing the cell performance. lts behaviour is governed by a small set of parameters that correlate to physical
quantities.

Model equations / Model sketch
Assumed discharge reaction path: O, + e > O, | Li*+ O, 2> LIO, | 2LiO, = Li,O, + O,
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e Active mode has contrary effect 2 no performance improvement over passive mode
e Simple mathematical model covers basics of chronoamperometry method
- crucial parameters correspond to physical quantities
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- fitting possible ( but requires long time or fast computing )
e Shoulder at high rate discharge (2.0V) indicates transition from rate- to diffusion limited behaviour
- O, is consumed faster than it is transported across the cathode depth
e Better overall understanding of inner working
- Variation of single parameters to identify perfomance limiting quantities
- Find redundant quantities (e.g. to save material - cost)
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