

A simplified model for O_2 transport and reduction kinetics in porous cathodes of Li-O cells

Thomas Schied^{1,2}, Frieder Scheiba^{3,4}, Jürgen Eckert^{1,2}, Helmut Ehrenberg^{3,4}

1) Technical University Dresden; 2) Leibniz Institute for Solid State and Materials Research Dresden; 3) Karlsruhe Institute of Technology, IAM-ESS, Karlsruhe, Germany; 4) Helmholtz-Institute Ulm for Electrochemical Energy Storage, Ulm, Germany

LiBD-6 2013 – "Electrode materials" Arcachon, France June 16-21, 2013

Introduction

Todays Li-O cells suffer a number of inconveniences. However, their investigation is justified by the very high theoretical energy density of the Li-O – system. Performance determining processes are mainly oxygen transport and reaction kinetics. This work is comprised of two main parts to approach these issues:

1) A cell design approach to actively enrich the electrolyte with O₂ and find out about possible differences/improvements compared to passive O₂ supply. The idea is to improve the performance by increasing the O₂ concentration in the electrolyte. For this purpose a 2mode cell was constructed allowing for the supply of O_2 to the cathode in two ways. Either exchanging an inert gas (e.g. Ar) for O_2 above the cathode (classic way = passive mode) or using a 2-channel curly structure to push oxygen directly into the cathode (active mode).

2) Development of a simplified model to quantitatively describe measured discharge curves. The model allows isolated study of the most important processes influencing the cell performance. Its behaviour is governed by a small set of parameters that correlate to physical quantities.

Model scope

Included:

- Absorption of O_2
- Diffusive transport of O₂
- Kinetics of O₂ reduction reaction
- Passivation of the active cathode surface (BET)
- SOC-effect on O_2 transport (pore clogging)

Not included:

- All aspects of Li transport
- Thermodynamics
- Recharging

Conclusions

- Active mode has contrary effect \rightarrow no performance improvement over passive mode
- Simple mathematical model covers basics of chronoamperometry method
 - crucial parameters correspond to physical quantities
 - fitting possible (but requires long time or fast computing)
- Shoulder at high rate discharge (2.0V) indicates transition from rate- to diffusion limited behaviour
 - O₂ is consumed faster than it is transported across the cathode depth
- Better overall understanding of inner working
 - Variation of single parameters to identify perfomance limiting quantities
 - Find redundant quantities (e.g. to save material \rightarrow cost)

Acknowledgement:

PD Dr. Arnulf Möbius for discussion and suggestions on the model

Ulrike Nitzsche for competent technical assistance on the IFW cluster computer

Grzegorz Parzych and Markus Klose, for discussion and experimental assistance