
"LIGA2.X" a New Process to Fabricate Single Polymeric LIGA Micro Parts

J. Heneka^{1,2} ,M.Guttmann², K. Plewa¹

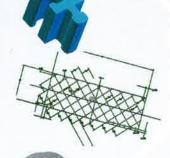
¹Institute for Applied Materials – Material Process Technology (IAM-WPT) - KIT, Karlsruhe Institute of Technology, Germany ²Institute of Microstructure Technology (IMT) - KIT, Karlsruhe Institute of Technology, Germany

Motivation

- ·suitable process for micro injection moulding
- ·high precision parts, high aspect ratios
- •shorter cycle times, reduction of scrap production
- •part volumes < 0.5 mm³
- •flexible arrangment of single cavities in a multicavity mould
- •rework free replicated parts
- ·high dimensional accuracy of the replicated parts

Mold insert fabrication

LIG, X-ray Lithography, nickel electroplating, mechanical processing


Part design using 3D CAD software

Mold concept three plate multi cavity mold

LIGA2.X a modified LIGA process sequence for the fabrication of polymeric single micro parts

5 ton Microsystem 50 injection molding machine

Conclusion

A new process sequence could be developed to fabricate LIGA microparts without requiring any rework. The replication of LIGA2.X mold inserts with semi crystalline POM could be shown using a Microsystem 50 micro injection molding machine. This is a new chance for the use of LIGA mold inserts in the plastic industry to fabricate cost effective LIGA micro-parts in large scale.

Acknowledgements

This work was carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). Thanks also to all the colleagues at the KIT for their contribution to this work.