

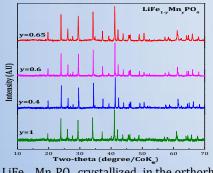
LiFe_{1-y}Mn_yPO₄ phosphates as convenient electrode materials for energy storage and conversion

llham BEZZA¹, Maximilian Kaus², Ralf Heinzmann², Kristian Nikolowski^{3,4}, Helmut Ehrenberg^{3,4}, Sylvio Indris^{2,4}, Horst Hahn^{2,4}, <u>Ismael SAADOUNE¹</u>

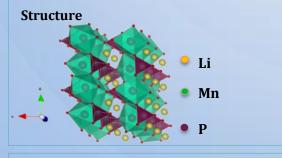
¹Laboratoire de Chimie des Matériaux et de l'Environnement, Université Cadi Ayyad, Avenue A. Khattabi, BP 549 Marrakech, Morocco; e-mails: <u>i.saadoune@uca.ma</u> <u>ilhambezza@yahoo.com</u>

²Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
³Karlsruhe Institute of Technology, Institute of Applied Materials, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
⁴Helmholtz Institute Ulm for Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89069 Ulm, Germany

Abstract

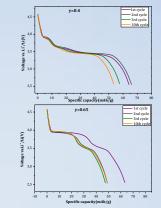

LiFe_{1-y}Mn_yPO₄ olivines were synthesised by the combustion method. The samples were investigated using a several techniques: XRD, ⁵⁷Fe Mössbauer, ⁷Li NMR. Electrochemical cycling of LiFe_{1-y}Mn_yPO₄ phosphates showed that the capacity decreases with increased amount of Mn.

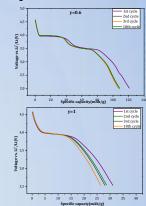
Experimental


 $LiFe_{1-y}Mn_yPO_4$ was synthesised by the combustion method. The precursors were used in the nitrate form while the phosphoric acid H_3PO_4 was used as phosphate source and the sucrose was the fuel and the carbon source . The sample was calcined at 800°C for 12h.

Characterization

XRD spectra:


 $LiFe_{1-y}Mn_yPO_4$ crystallized in the orthorhombic system with the Pnma space group.



Conclusion

 ${\rm LiFe}_{1,y}{\rm Mn}_y{\rm PO}_4$ phosphates, synthesised by the combustion method, crystallized in the orthorhombic system with an open structure. The Mossbauer spectroscopy confirmed that the as prepared materials contain ${\rm Fe}^{2*}$ ions that are completely oxidized to ${\rm Fe}^{3*}$ during the charge of the Li//LiFe $_{1,y}{\rm Mn}_y{\rm PO}_4$ battery. The electrochemical cycling showed that the specific capacity decrease with increased Mn content .

Electrochemical properties

• 57 Fe Mössbauer spectra of LiFe $_{0.4}$ Mn $_{0.6}$ PO $_4$ were collected at different delithiation states.

- The parameters (IS, QS) confirm the presence of Fe^{2+} in state A. the broad doublet successively disappears and a new, narrow doublet is formed (Fe^{3+}).
- The spectrum shows that the Fe^{2+} ions have been oxidized completely to Fe^{3+} .

• The NMR spectra (not shown here) confirm the presence of two phase domains even when Fe is substituted by Mn

Acknowledgements

D

99.8

This research work was financially supported by IRESEN (Institut de Recherche en Energie Solaire et Energies Nouvelles, MOROCCO) (2013-2015) and by HIU (Ulm Helmholtz Institute for electrochemical energy storage).