
Y-K edge is measured. (E0=17.038 keV)
-Transmission mode: reference compounds; measured by ion chambers
-Fluorescence mode: dilute samples; measured by a multi-elements Ge-detector

µ is absorption coefficient, which gives the probability that x-rays will be 
absorbed as a function of energy.

Abstract
The speciation and structural evolution of nanoscale yttrium-enriched oxides in numerous reduced activation oxide dispersion strengthened (ODS) ferritic steels have been
investigated by systematic X-ray absorption fine structure (XAFS) spectroscopy (including X-ray absorption near-edge structure and extended X-ray absorption fine
structure). The local structure and speciation of Y-enriched oxides during the fabrication process have been traced by Yttrium (Y) K-edge XAFS in fluorescence mode for
both mechanical alloyed (MA) powders and compacted ODS alloys. After 24 h of milling, only 10%-14% of the initially added 0.3 wt. % Y2O3 dissolves into the steel matrix
and titanium (Ti) exhibits a minor influence on the Y solid solution during the MA. The EXAFS analysis for compacted ODS alloys indicates the formation of new Y-enriched
oxides rather than initial Y2O3. The addition of Ti exhibits an evident influence on the consolidation process rather than in the MA.
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Systematic XAFS investigation of the structural evolution of yttrium-enriched 
oxides in ODS ferritic steels by advanced synchrotron source at ESRF
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Table 1 Chemical composition, sample geometry and fabrication
parameters of 13.5Cr ODS steels

a - Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
b - Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany

c - European Synchrotron Radiation Facility, Grenoble, France

Fig.2 Y K-edge XANES spectra of the MA powder and compacted samples 
together with the reference samples, metal Y and Y2O3, the absorption edge, 
the main peak and the shoulder at the post edge are marked by A, B and C.

Fig.4 Fourier transform of EXAFS functions of MA steel powders and
metal Y, Y2O3 references, phase shift was not corrected. The two peaks
corresponding to Y-O and Y-Y are marked.

Fig.1 XAFS experimental setup at BM26A of ESRF

Fig. 5 Fourier transform of EXAFS functions of MA steel powders
and metal Y, Y2O3 references, phase shift was not corrected.
The two peaks corresponding to Y-O and Y-Y are marked.
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Sample Composition Mass & Geometry Remarks

Reference Y foil 25*5*0.025 mm3

Y2O3 Pellet  (d=10mm)

MA steel powders 0 Ti MA: 24 hours; H2;

Fe-13.5Cr-2W 0.2 Ti Ball-to-powder ratio= 10:1

0.3 Ti

0.4 Ti

Compacted samples 0 Ti 27*3*4mm3 MA + HIP +HT

Fe-13.5Cr-2W 0.2 Ti HIP:1150 °C, 100 MPa, 2.5 hours

0.3 Ti HT: 1050 °C, 2 hours, Vacuum

0.4 Ti
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Fig.3  Y K-edge XANES of MA powders (0 wt. % Ti) and a linear fit by 
(a) Y metal and Y2O3, (b) by Y metal and compacted sample with 0.4 wt. % Ti.

Beer’s law:

0/)( IIEµ f

Composition 0 Ti 0.2 Ti 0.3 Ti 0.4  Ti
% 10.2 12.8 13.7 11.5

Table 2 Relative fraction of the metallic Y component in the MA powders
determined from the linear fit of XANES.All the curves for  MA powders overlap and  the Y K-edge lies between Y and Y2O3.

• Overlap indicates no obvious influence of Ti during MA

• The curve position indicates partial dissolution of Y2O3 during MA.

XANES spectra for compacted samples shows pronounced differences

• The chemical shift (A) for compacted samples almost coincides with that of Y2O3.

•A bump (C) in pure Y2O3 is still absent in all compacted sample. 

After 24 h of milling, 10%-14% of the initially added 0.3 wt. % Y2O3

dissolves into the steel matrix.  It indicates that longer milling time

is required for complete Y dissolution.

µteII  0

 The MA powders are characterized by Y-O and Y-Y peaks, close to Y2O3. 

 The much smaller peak height of the Y-Y indicates that the Y2O3 in the MA 
powders is much more disordered because of severe plastic deformation.

 The fitting reveals that the yttrium oxides after the MA are different from 
the initially added Y2O3 powders, with a decreased coordination number, 
especially for the second Y-Y shell.

The local structure of Y varies significantly with Ti contentThe local structure of Y varies significantly with Ti content

 3 shells observed for the sample without Ti, better fit with YCrO3 than Y2O3

 2 shells observed for the samples with Ti, the intensity and  the distance of 
Y-Y shell are different

 Ti-containing samples can not be well fit with each single phase indicating 
they have a mixture of various nano phases. 


