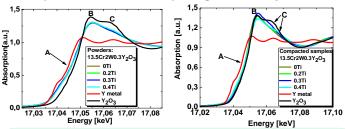


Institute for Applied Materials Applied Materials Physics (IAM-AWP) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Karlsruhe, Germany

a - Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany b - Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany c - European Synchrotron Radiation Facility, Grenoble, France

Systematic XAFS investigation of the structural evolution of yttrium-enriched oxides in ODS ferritic steels by advanced synchrotron source at ESRF

P. Hea, T. Liub, A. Moeslanga, S. Nikitenkoc


Abstract

The speciation and structural evolution of nanoscale yttrium-enriched oxides in numerous reduced activation oxide dispersion strengthened (ODS) ferritic steels have been investigated by systematic X-ray absorption fine structure (XAFS) spectroscopy (including X-ray absorption near-edge structure and extended X-ray absorption fine structure). The local structure and speciation of Y-enriched oxides during the fabrication process have been traced by Yttrium (Y) K-edge XAFS in fluorescence mode for both mechanical alloyed (MA) powders and compacted ODS alloys. After 24 h of milling, only 10%-14% of the initially added 0.3 wt. % Y₂O₃ dissolves into the steel matrix and titanium (Ti) exhibits a minor influence on the Y solid solution during the MA. The EXAFS analysis for compacted ODS alloys indicates the formation of new Y-enriched oxides rather than initial Y₂O₃. The addition of Ti exhibits an evident influence on the consolidation process rather than in the MA.

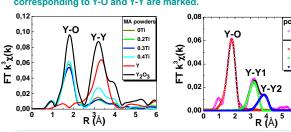
Table 1 Chemical composition, sample geometry and fabrication parameters of 13.5Cr ODS steels

Sample	Composition	Mass & Geometry	Remarks
Reference	Y foil	25*5*0.025 mm ³	
	Y_2O_3	Pellet (d=10mm)	
MA steel powders	0 Ti		MA: 24 hours; H ₂ ;
Fe-13.5Cr-2W	0.2 Ti		Ball-to-powder ratio= 10:1
	0.3 Ti		
	0.4 Ti		
Compacted samples	0 Ti		MA + HIP +HT
Fe-13.5Cr-2W	0.2 Ti		HIP:1150 °C, 100 MPa, 2.5 hours
	0.3 Ti		HT: 1050 °C, 2 hours, Vacuum
	0.4 Ti		

Fig.2 Y K-edge XANES spectra of the MA powder and compacted samples together with the reference samples, metal Y and Y₂O₃, the absorption edge, the main peak and the shoulder at the post edge are marked by A, B and C.

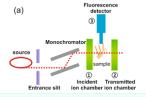
All the curves for MA powders overlap and the Y K-edge lies between Y and Y₂O₃.

- Overlap indicates no obvious influence of Ti during MA
- The curve position indicates partial dissolution of Y₂O₃ during MA.


XANES spectra for compacted samples shows pronounced differences

- The chemical shift (A) for compacted samples almost coincides with that of Y₂O₃.
- $\bullet A$ bump (C) in pure Y_2O_3 is still absent in all compacted sample.

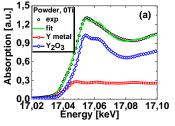
Fig.4 Fourier transform of EXAFS functions of MA steel powders and metal Y, Y_2O_3 references, phase shift was not corrected. The two peaks corresponding to Y-O and Y-Y are marked.


exp

Y-0 Y-Y1 Y-Y2

- The MA powders are characterized by Y-O and Y-Y peaks, close to Y₂O₃.
- The much smaller peak height of the Y-Y indicates that the Y₂O₃ in the MA powders is much more disordered because of severe plastic deformation.
- The fitting reveals that the yttrium oxides after the MA are different from the initially added Y₂O₃ powders, with a decreased coordination number, especially for the second Y-Y shell.

Fig.1 XAFS experimental setup at BM26A of ESRF


Y-K edge is measured. (E₀=17.038 keV)

-Transmission mode: reference compounds; measured by ion chambers -Fluorescence mode: dilute samples; measured by a multi-elements Ge-detector

Beer's law: $I = I_0 e^{-\mu t}$

 μ is absorption coefficient, which gives the probability that x-rays will be absorbed as a function of energy. $\mu(E) \propto I_f/I_0$

Fig.3 Y K-edge XANES of MA powders (0 wt. % Ti) and a linear fit by (a) Y metal and Y_2O_3 , (b) by Y metal and compacted sample with 0.4 wt. % Ti.

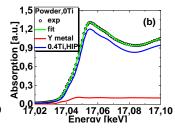
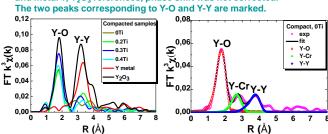



Table 2 Relative fraction of the metallic Y component in the MA powders determined from the linear fit of XANES.

Composition	0 Ti	0.2 Ti	0.3 Ti	0.4 Ti
%	10.2	12.8	13.7	11.5

After 24 h of milling, 10%-14% of the initially added 0.3 wt. $\%~Y_2O_3$ dissolves into the steel matrix. It indicates that longer milling time is required for complete Y dissolution.

Fig. 5 Fourier transform of EXAFS functions of MA steel powders and metal Y, Y₂O₃ references, phase shift was not corrected.

The local structure of Y varies significantly with Ti content

- 3 shells observed for the sample without Ti, better fit with YCrO₃ than Y₂O₃
- 2 shells observed for the samples with Ti, the intensity and the distance of Y-Y shell are different
- Ti-containing samples can not be well fit with each single phase indicating they have a mixture of various nano phases.