
Institute for Neutron Physics
and Reactor Technology

Reactor Physics and Dynamics Group (RPD)

Javier Jiménez *, Nico Trost, Uwe Imke, Victor Sanchez

Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Germany
Hermann-von-Helmholtz-Platz 1, Geb. 521, 76344 Eggenstein-Leopoldshafen

* Corresponding Author, Email: Javier Jimenez, javier.jimenez@kit.edu

Parallelization of TWOPORFLOW, a Cartesian Grid based Two-Phase
Porous Media Code for Transient Thermo-hydraulic Simulations

Joint International Conference on Supercomputing in Nuclear Applications
and Monte Carlo 2013 (SNA + MC 2013) - La Cité des Sciences et de

l’Industrie, Paris, France, October 27-31, 2013

Abstract #A051

TWOPORFLOW CODE

DOMAIN DECOMPOSITION IMPLEMENTATION

 TWOPORFLOW (TPF) is a thermo-hydraulic code based on a porous media approach to
simulate single- and two-phase flow including boiling.

 Coarse Cartesian grids are used to obtain volume-averaged parameters. TPF features a
3D transient solution of the mass, momentum and energy conservation equations for
two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver.

 The application domain of TWOPORFLOW includes the flow in standard and structured
porous media such as micro-channels, spent fuel pools or reactor cores of nuclear
power plants.

 The IAPWS-97 formulation of the water and steam thermodynamic properties as well as
new models for describing physical phenomena were recently implemented in TPF.

 TPF has been parallelized by using the OpenMP standard combined with a domain
decomposition methodology.

 Both parallelization approaches can be enabled at the same time leading to a highly
scalable and flexible execution of TWOPORFLOW code.

This work has been carried out at the Institute for Neutron Physics and Reactor
Technology (INR) of the Karlsruhe Institute of Technology (KIT). The authors would like to
thank the Program Nuclear Safety Research of KIT for the financial support of the research
topic “multi-physics methods for LWR”.

ACKNOWLEDGMENTS

CONCLUSIONS
 The performance of TPF was investigated and optimized.
 The IAPWS-97 water and steam property equations have been decoupled and

parallelized using OpenMP. The same happened with the fuel rod heating model.
 The pinning of each OpenMP thread to a specific core during execution time has been

proven to be a key factor to improve the performance gain by using more efficiently the
CPU cache.

 A domain decomposition method has been implemented using MPI.
 The performance of this method has been proven to be higher for computationally

intensive cases.

 A domain decomposition method was implemented in order to take benefit from
distributed memory systems.

 It is based on splitting the initial Cartesian problem into smaller sub-problems which are
distributed over different processors and solved simultaneously.

 The processors need to communicate between each other during the solution process
as the information on the sub-problems interfaces have to be updated consequently.
This communication is implemented using the MPI standard.

 OpenMP pragmas were implemented in the routines in charge of inter-phase
momentum-, energy- and mass-coupling.

 The result of the profiling analysis was crucial in order to parallelize the loops which
have a higher fraction of execution time while avoiding the performance penalization
coming from the fork and join model as much as possible .

 After some investigations on the source code structure, the steam and water property
related subroutine calls were identified to be completely independent of each other. This
is because most property computations depend only on temperature and pressure and
can therefore be computed in parallel.

 The performance of codes parallelized with the OpenMP API may be significantly
improved by pinning the OpenMP threads to a specific CPU on dual socket machines.

 For the best performance, it is necessary to load data mainly from local memory, seen
from the threads point of view. This implies the exclusive cache utilization by our
application. In this work, Likwid-pin has been employed.

 The speedup measurements were performed using the case Nr. 1071-55 of the NUPEC
BFBT benchmark.

OpenMP IMPLEMENTATION

1,0

1,5

2,0

2,5

3,0

3,5

1 6 11 16

S
p

ee
d

u
p

Number of cores used

OpenMP No Pinning

OpenMP Pinning

of
cores

MPI OMP No Pinning OMP Pinning

Time [s] S Time [s] S Time [s] S

1 23.6 1.064 25.0 1.002 24.6 1.019

2 17.9 1.398 18.6 1.346 17.8 1.409

4 14.7 1.702 15.4 1.627 14.9 1.682

8 16.4 1.532 18.3 1.255 13.9 1.805

16 - - 20.0 1.254 20.0 1.251

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

V
oi

d
 f

ra
ct

io
n

 [
%

]

Time [s]

BFBT 4102 019-027 Pump Trip

TPF 2730mm Exp. 2730mm

TPF 1706mm Exp. 1706mm

TPF 683mm Exp. 683mm
0

1

2

3

4

5

6

1 3 5 7

S
p

ee
d

u
p

Number of cores used

Solver SOR with MPI

Solver Direct with MPI

Solver Direct with OpenMP

 A parallelized tool not always implies to obtain a net speedup above 1.0.

 Time consumption by communication overhead is a crucial aspect in parallel
programming and should be kept always as minimal as possible.

 Communication overhead typically arises from communication transfer (barriers,
synchronization points, data transfer, packing, unpacking) and memory management
within the cores (thread fork and join).

 A saturation of the applications scalability will be always existent and can be achieved
or not, depending on the settings for a specific execution.

 To illustrate the saturation, we took case P60001 from the BFBT Benchmark single-
phase pressure drop measurement series. For the fuel assembly geometry, a very
coarse mesh representation was selected.

 In the BFBT Phase I Exercise II Transient experiments, a pump trip is simulated for a
whole BWR bundle. The average void fraction is measured at three different elevations
(683, 1706 and 2730 mm from the bottom). The serial runtime is 4h 37min.

OVERALL PERFORMANCE OPTIMIZATION AND RESULTS

Examples of possible domain
decompositions in several dimensions

Example of a 1D domain decomposition using 4
processors (from rank 0 to 3)

of
cores

No Pinning Pinning

Time [s] Speedup Time [s] Speedup

1 856.88 1.000 683.23 1.254

2 441.51 1.941 431.15 1.987

4 384.61 2.228 329.23 2.603

8 300.57 2.851 265.04 3.233

16 322.13 2.660 - -

