

Karlsruhe Institute of Technology

Further Development of High-Fidelity Reactor Simulator DYNSUB

Reactor Physics and Dynamics Group (RPD)

<u>M. Daeubler¹, J. Jimenez¹, V. Sanchez¹, R. Stieglitz¹, R. Macian-Juan²</u>

¹ Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (KIT INR) ² Technical University of Munich (TUM)

 $\mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0}$

Assembly

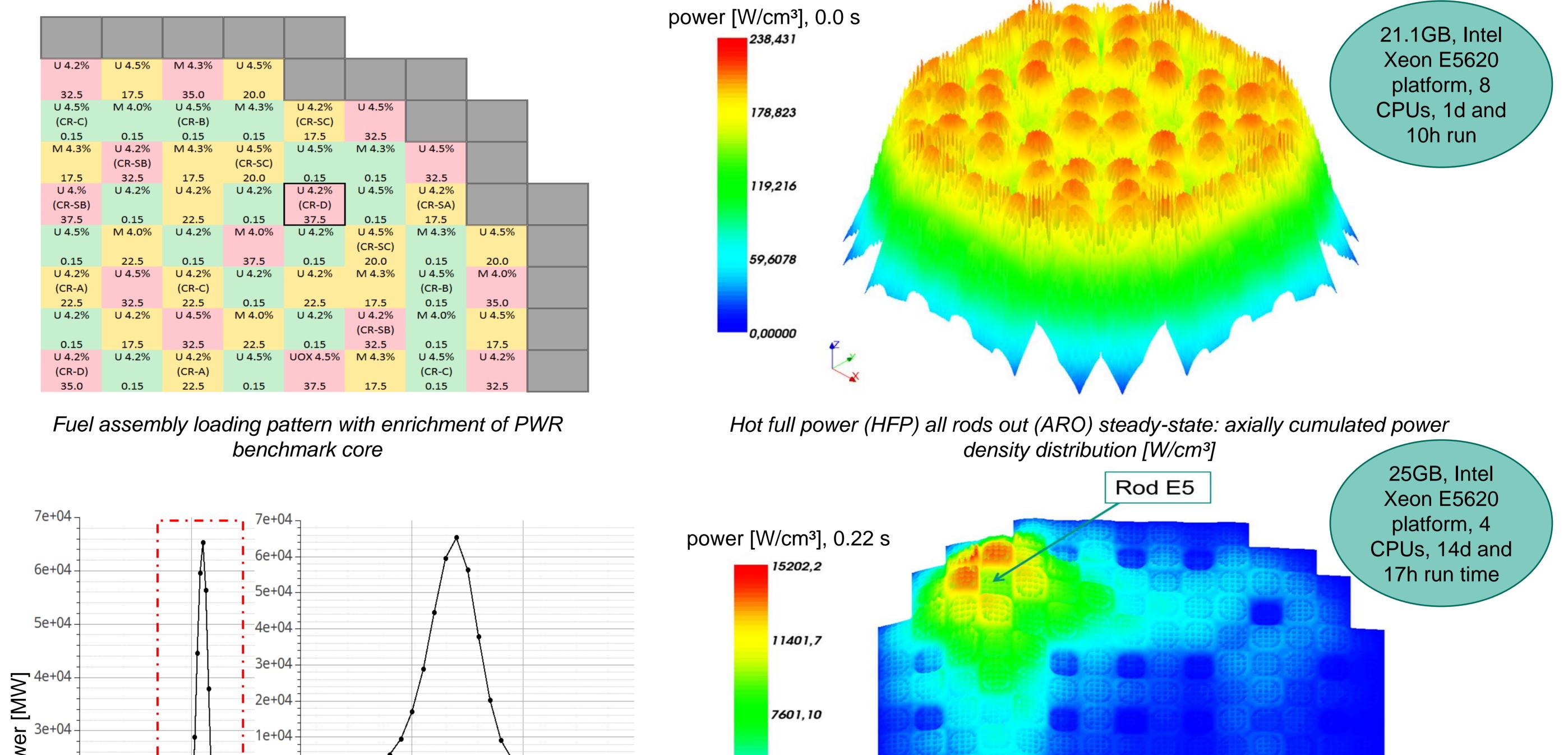
High-fidelity coupled code system DYNSUB

- Homogeneous neutron kinetics code DYN3D:
 - Neutron diffusion and simplified transport at fuel pin level
 - Supported Interface Discontinuity Factors (IDF) and Super-Homogenization (SPH) factors

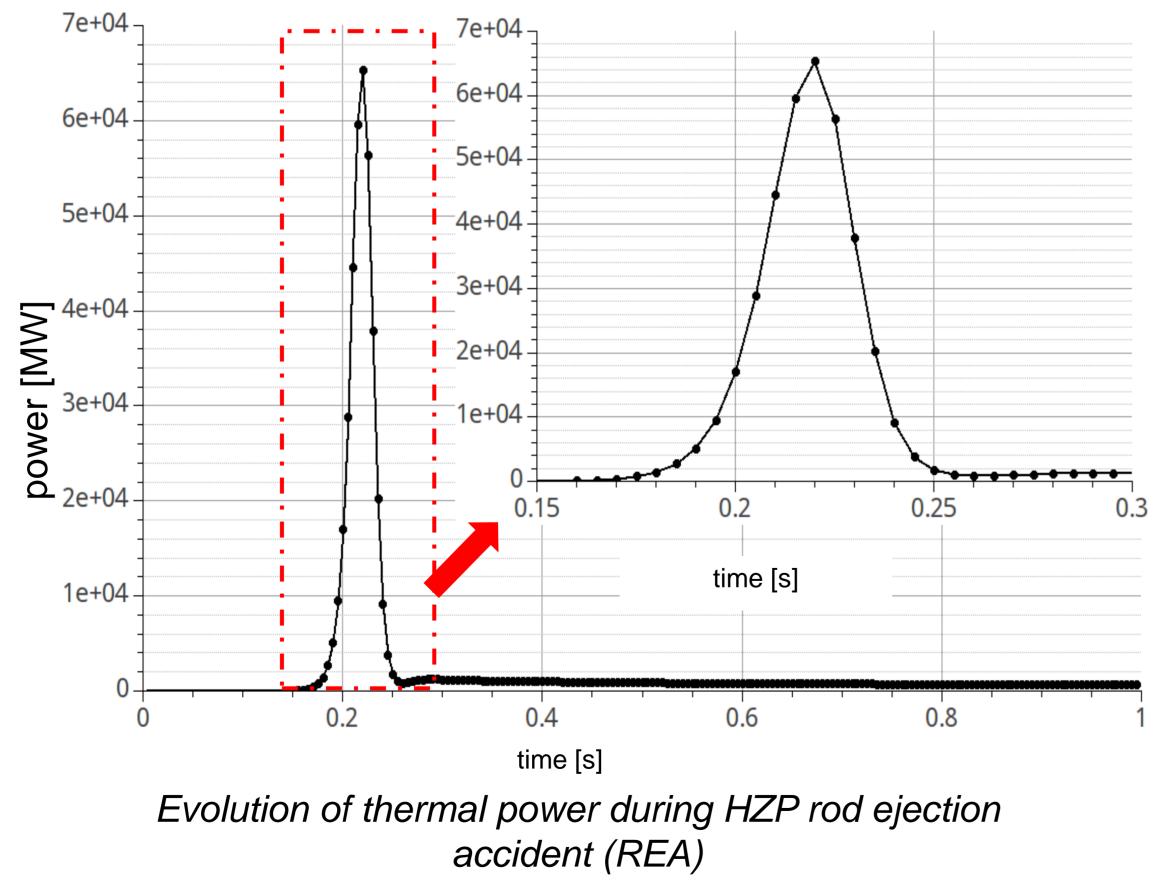
Homogenization corrections

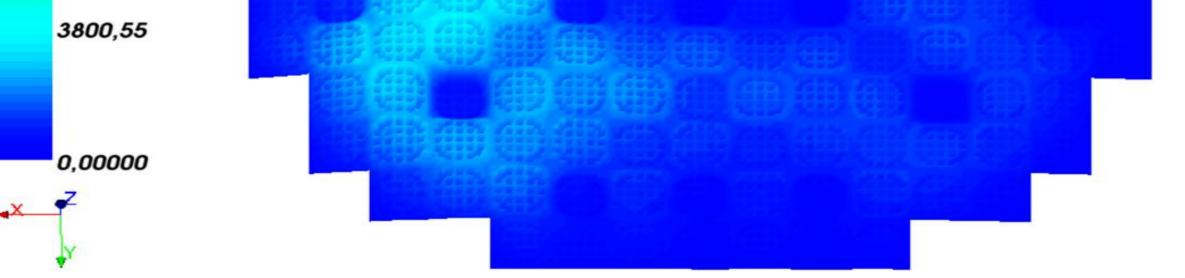
- □ Generation of such effective cross sections introduces homogenization errors into the simulation
- IDF and SPH factors evaluation developed for DYNSUB

- Sub-channel code SUBCHANFLOW:
 - 3 mixture equations, two phase flow, 1 equation for cross flow
 - Coolants: water, lead, sodium and helium
 - Boron transport model
- Major features of DYNSUB:
 - Internal coupling, flexible spatial mapping, SMD parallelism
 - Resolution of active reactor core at fuel rods and sub-channel level
 - Direct evaluation of critical fuel rod level safety parameters (e.g. DNBR)
 - Current capabilities: static and transient simulation of square lattice PWR
 - Under development: support for square lattice BWR


based on lattice codes SCALE 6.1/TRITON and SERPENT

	Code	k-inf	Relative difference [pcm]	
	Serpent 2 CE	1.08496 ±0.000030	-	
	DYN3D 4g diff (3M)	1.087627	266.7	
	DYN3D 4g sp3 (3M)	1.086733	177.3	
	DYN3D 4g diff (32M)	1.087578	261.8	
	DYN3D 4g sp3 (32M)	1.086685	172.5	
	DYN3D 4g (324M) SPH	1.084951	0.9	
	DYN3D 4g (324M) GET IDF	1.084950	1.0	
Composition of a	DYN3D 4g (324M) BBH IDF	1.084950	1.0	
18x18-24 MOX Fuel				


MOX Fuel Assembly Eigenvalue Comparison


Selected safety case: Reactivity-Initiated Accident in PWR

- OECD/NEA and U.S. NRC MOX/UO2 core transient benchmark
- Hot full power (HFP) steady-state and hot zero power (HZP) rod ejection

04.570	IVI 4.070	04.570	101 4.570	0 4.270	04.370			
(CR-C)		(CR-B)		(CR-SC)				
0.15	0.15	0.15	0.15	17.5	32.5			
M 4.3%	U 4.2%	M 4.3%	U 4.5%	U 4.5%	M 4.3%	U 4.5%		
	(CR-SB)		(CR-SC)					
17.5	32.5	17.5	20.0	0.15	0.15	32.5		
U 4.%	U 4.2%	U 4.2%	U 4.2%	U 4.2%	U 4.5%	U 4.2%		
(CR-SB)				(CR-D)		(CR-SA)		
37.5	0.15	22.5	0.15	37.5	0.15	17.5		
U 4.5%	M 4.0%	U 4.2%	M 4.0%	U 4.2%	U 4.5%	M 4.3%	U 4.5%	
					(CR-SC)			
0.15	22.5	0.15	37.5	0.15	20.0	0.15	20.0	
U 4.2%	U 4.5%	U 4.2%	U 4.2%	U 4.2%	M 4.3%	U 4.5%	M 4.0%	
(CR-A)		(CR-C)				(CR-B)		
22.5	32.5	22.5	0.15	22.5	17.5	0.15	35.0	
U 4.2%	U 4.2%	U 4.5%	M 4.0%	U 4.2%	U 4.2%	M 4.0%	U 4.5%	
					(CR-SB)			
0.15	17.5	32.5	22.5	0.15	32.5	0.15	17.5	
U 4.2%	U 4.2%	U 4.2%	U 4.5%	UOX 4.5%	M 4.3%	U 4.5%	U 4.2%	
(CR-D)		(CR-A)				(CR-C)		
35.0	0.15	22.5	0.15	37.5	17.5	0.15	32.5	

HZP rod ejection accident (REA): axially cumulated power density distribution [W/cm³] at 0.22s

Conclusions

First study of safety cases with DYNSUB proves general applicability for LWR safety analysis

Run times too long for routine application, further improvements necessary to make DYNSUB cost-effective multi-physics tool

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

