

Karlsruhe Institute of Technology

Modeling of the Urban Heat Island and its effect on air quality using WRF/WRF-Chem

Joachim Fallmann¹, Stefan Emeis¹, Peter Suppan^{1,} Renate Forkel¹, Georg Grell², Stuart McKeen² Contact: joachim.fallmann@kit.edu

1 Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany 2 NOAA Earth System Research Laboratory (ESRL), Global Systems Division (GSD), 325 Broadway Boulder, CO 80305-3328, USA

b) WRF-Chem - chemical Part

1. Motivation

- officially about **7 billion** people live on earth; growing rate: 78 million/year
- by 2030, around 60% living in cities, in 2000 nearly 2900 cities with more than 100000 inhabitants
- Iarge urban areas impact surface-atmosphere exchange processes (UHI) → 'Urbanized Atmosphere'
- UHI's raise demands of energy for air conditioning during summer periods → power plants rely on fossil fuels → increase of air pollutants and greenhouse gas emissions (EPA, 2013)
- primary pollutants include SO2, NOx, PM, CO etc. → contribution to complex air quality problems such as
 ground level ozone (SMOG), fine PM or acid rain
- Elevated temperatures can directly increase the rate of ground-level ozone formation
- Climate change will have specific urban expressions: altered urban heat island phenomena, impacts on regional circulation systems, air pollution levels, radiative feedback mechanisms of aerosols and human health

2. Research Focus

The Urban Heat island

- The tendency for an urbanized area to remain warmer than its surroundings → urban- rural interactions
- Additional heat sources, roughness effects and albedo of urban surfaces 'design' specific atmospheric dynamics
- Stable weather conditions with low wind speeds can produce strong inversion layers → trapping of air pollutants
- Regional secondary circulation patterns → transportation of rural air pollutants (e.g. BVOC's) into city → reaction with urban pollutants → Urban Plume

Tab. 1: WRF-Chem configurations

ographical input data	30 Deg USGS land use with 33 classes
dy	3km
st-east	120
uth-north	100
tical layers	36
est model level	20m
teorological boundary conditions	0.5 Deg ERA-Interim reanalysis
emical boundary conditions	Mozart global data
chemistry	Megan
emical option	RADM2 chemical mechanism; MADE/SORGAM aerosols
ission data	7km MACC emission for Europe
rt time	8/9/03
d time	9/18/03
crophysics	Lin et al
gwave	RRTMG
ortwave	RRTMG
d surface model	Noah LSM
anization scheme	BEP
undary layer	MYJ
nulus scheme	Grell-Devenyi ensemble scheme
otolysis	FastJ

Specific urban planning strategies can reduce negative effects ->
 mitigation measures

Challenging the complexity

- downscaling mesoscale model WRF to city scale (1km)
- testing the effects of land use changes on meteorological conditions during summer heat waves using different urban parameterization approaches in WRF
- Simulate simple mitigation strategies : 1.effect of white roofs by increasing the albedo up to 0.70; 2.replace urban surface by natural vegetation; 3.decrease building density by 20%
- Conduct scenario-runs (10 days) for the area of Stuttgart and rural surroundings for both WRF and WRF-Chem

5. Conclusions

- WRF nesting approach shows reasonable results for different urban planning scenarios and their effect on potential 2m temperature, especially during extreme case scenarios
- Difficulties in reproducing effects on atmospheric chemistry → higher resolution of emission data is needed, bigger domain, nesting etc.
- Effects of different urban planning scenarios not consistent \rightarrow further studies scheduled

This work is funded by the EU- Project "UHI - Development and application of mitigation and adaptation strategies and measures for counteracting the global UHI phenomenon" (3CE292P3) – CENTRAL Europe. (2011-2014). The Authors would also like to thank Jon Osborne (NOAA) for providing editorial support for this poster.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

