Development of Phase Field Methods with OpenFOAM® and its Application to Dynamic Wetting Processes

Xuan Cai¹, Holger Marschall², Martin Wörner¹ and Olaf Deutschmann¹

¹ Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Germany
² Center of Smart Interfaces, Technische Universität Darmstadt, Germany

1. Motivation
 ▪ Wetting process in chemical reactor of foam structure
 ➢ Mathematical consistent modeling of moving contact lines on irregular solid surface
 → Resolve stress singularity at no-slip wall

2. Phase Field Methods
 ▪ Cahn-Hilliard (CH) or Allen-Cahn (AC) equation for phase field advection
 CH: \(\frac{\partial C}{\partial t} + (\mathbf{u} \cdot \nabla)C = \kappa \nabla^2 \left(C(C-1)(C+1) - \nabla^2 C \right) \)
 AC: \(\frac{\partial C}{\partial t} + (\mathbf{u} \cdot \nabla)C = -\frac{\gamma}{\epsilon} C(C-1)(C+1) + \nabla^2 C \)
 ➢ \(C \): phase field; 1 for liquid and -1 for gas; it varies continuously over the diffuse interface
 ➢ CH or AC is coupled with momentum equation through surface tension, linear momentum, viscous stress and buoyancy terms

3. Development and Implementation
 ➢ Platform: OpenFOAM® (an open source CFD software package); interDyMFoam as starting point
 ➢ In Cahn-Hilliard, the mobility (4th order derivative) is for now treated in segregated manner with time-step sub-cycling
 ➢ In Allen-Cahn, Lagrange multiplier implemented to enforce phase volume conservation property
 ➢ In momentum equation, relative density flux term due to diffusion of components (central to volume conservation)
 ➢ Surface tension term is implemented as surface tension energy density

4. Validation (using Cahn-Hilliard)
 ▪ 2D Static mesh simulation
 ▪ 3D Adaptive Mesh Refinement (AMR) simulation interface region (refinement level = 2)

5. Outlook
 ➢ Compensation scheme for wall energy relaxation model
 ➢ Block-coupled solution approach to phase field transport in Cahn-Hilliard equation
 ➢ Chemically and geometrically heterogeneous surface
 ➢ Pinning effect of droplet on inclined surface
 ➢ Representative complex sponge structure

We acknowledge funding by Helmholtz Energy Alliance “Energy-efficient chemical multiphase processes”