THERMO-MECHANICAL SCREENING TESTS TO QUALIFY BERYLLIUM PEBBLE BEDS WITH NON-SPHERICAL PEBBLES

Joerg Reimanna, Benjamin Fretzb, Simone Pupeschc

aIKET, Karlsruhe Institute of Technology, Karlsruhe, Germany
bKBHF GmbH, Egggenstein-Leopoldshafen, Germany
cIAM, Karlsruhe Institute of Technology, Karlsruhe, Germany

Objectives

- In present ceramic breeder blankets, pebble-shaped beryllium is used as a multiplier. As candidate material, spherical pebbles with diameters of \(d = 1 \text{mm} \) are considered.
- Non-spherical particles are of significant economical interest. Except of packing factors1, no thermo-mechanical pebble bed data exist for non-spherical beryllium grades.
- Qualification tests were performed in helium atmosphere at ambient temperature: Uniaxial Compression Tests (UCTs) combined with the Hot Wire Technique (HWT) to measure the thermal conductivity \(k \).

Experimental

Investigated beryllium grades:
- Be-1: spherical 1mm pebbles, NGK, Japan
- Be-A, Be-C: 2.5mm pebbles, different grain sizes, Bochvar, Russia
- Be-D: 2mm pebbles, Materion, USA

UCT and HWT experimental set-up: Only \(\approx 120 \text{cm}^3 \) of non-spherical beryllium grades were available. This resulted in a small set-up with a somewhat reduced measurement accuracy, ‘screening tests’. Therefore, the comparison with the spherical beryllium pebbles was important.

Hot Wire Modelling

The HWT Technique is a standard technique for thermal conductivity \(k \) measurements of materials with low \(k \) values in large containers. Both requirements are not fulfilled in the present case. Therefore, a detailed modelling of the HWT is required for the interpretation of the HW signal.

Experimental Results

\[t* = \log t \]

a) 3-D transient analyses with the FE ANSYS code were performed modelling in detail the HW (with inner structure) and the container.

b) A nominal value for the pebble bed thermal conductivity has been assumed, and then, the measured curve is approached by varying the HTC at the HW and the container walls. After a first period of time, the slope of an ideal HW temperature curve becomes constant (half-log plot). This is not the case for both the measured and calculated signal.

c) Because of the varying slope, the measured and calculated values of \(k \) are not constant. As correct value \(t^* \) that value is taken where measured and calculated values agree (iteration process)

d) This procedure is carried out for different values of \(k \) and a calibration curve is obtained. Different curves are determined for spherical and non-spherical pebble beds.

Conclusions

- Compared to spherical pebble beds, the thermal conductivity for non-spherical pebble beds is lower caused by i) the softer bed behaviour (smaller stress \(s \) for a given strain \(\varepsilon \) value), and, ii) the generation of smaller contact surfaces because of the non-regular shape.
- For blanket operation, the pebble bed strain is the primary parameter; for softer pebble beds the anticipated increase of the thermal conductivity during heating-up is smaller because of the reduced build-up of thermal stresses.