

Karlsruhe Institute of Technology

Institute for Applied Materials Material Process Technology (IAM-WPT)

Needs and gaps in the development of aluminum-based corrosion and T-permeation barriers for DEMO

S.-E. Wulf, W. Krauss, J. Konys

Motivation			
Al-based T-permeation- and corrosion barriers	Low-activation-ferritic-martensitic (RAFM) steels are foreseen as structural materials in different blanket designs e.g. HCLL, WCLL, DCLL for DEMO and partly as TBM's in ITER		Corrosion products at the wall of a drained tube

Steels are in direct contact with flowing Pb-15.7Li (liquid breeder) \rightarrow Control of corrosion and Tpermeation essential for reliable, safe and economic implementation

Bare steels suffer from significant corrosion attack of up to 400 µm per year in flowing Pb-15.7Li

b Danger of precipitation of dissolved corrosion products \rightarrow Plugging of tubings / system failure

Solution: Corrosion and T-permeation barriers on RAFM steels based on aluminum

- Reduction of corrosion attack
- Reduction of T-permeation through the RAFM steel into the coolant

Development of Al-based barriers

- Vapor plasma spraying (VPS), chemical vapor deposition (CVD), pack-aluminization and hotdipping (HDA) tested in the beginning
- **Corrosion protection potential of Al-based barriers** in flowing Pb-15.7Li (v = 0.22 m/s) proved for HDA and VPS
- **T-permeation reduction data**
 - High T-permeation reduction factors (PRF) at disk shaped samples in H₂ gas
- Significantly lower PRFs in Pb-15.7Li
- Ambiguous results depending on sample shape (disk vs. tube), test facility and process
- Drawbacks: Coating defects induced by the

Cross section CVD coating

ECX process: Time dependent growth

of electroplated AI (growth rate 25 µm/h)

Gaps in barrier development

Characterization and examination needs

- Optimization of deposition parameters
 - Homogenous plating \rightarrow More complex shaped parts
 - Further reduction of Al-thickness <12 μ m \rightarrow Lower limit?

- Delamination, coating defects, scale formation and reproducibility
- Optimization of heat treatment conditions
 - Influence of HT atmosphere on scale formation and Al₂O₃ formation in particular
- Testing and examination of recovery properties
 - Behavior of introduced barrier defects in Pb-15.7Li
 - Dependence on impurity amounts in Pb-15.7Li

Qualification under fusion relevant conditions needed

Insufficient pretreatment prior to electroplating

processes, e.g. cracks (HDA), low coverage (CVD) \rightarrow Problems: Compatibility in Pb-15.7Li (CVD), T-permeation (HDA, CVD), homogeneity

Introduction of electrochemical techniques to deposit AI on RAFM steels

- No reaction with the substrate material
- Adjustable Al thickness (time, j)
- Good adherence to the substrate
- Industrial relevance is given
- Process temperatures <100°C \rightarrow low energy consumption / costs

Electrodeposition of AI requires water-free electrolytes

- 1. Toluene-based electrolytes \rightarrow Adapted for deposition on RAFM steels \rightarrow ECA process
- 2. Ionic liquid based electrolytes \rightarrow More flexibility in using deposition parameters \rightarrow ECX process

Scale formation through subsequent heat treatment (HT)

- Improved, uniform scales achieved by ECX process due to use of pulse-plating techniques \rightarrow Improved surfaces
- Homogeneity after heat treatment depends on surface morphology

Compatibility in flowing Pb-15.7Li

- Long-term compatibility in Pb-15.7Li of Al-based coatings proved for coatings made by HDA and ECA. Partly available for ECX (up to 2,000 h).
- ECA: Corrosion rates 10 times lower compared to bare Eurofer (after 12,000 h)
- Coatings by electroplating thinner than HDA coatings \rightarrow Low activation
- Plateau formation during exposure in case of ECA \rightarrow ECX improved surfaces

- Compatibility in flowing Pb-15.7Li
 - Under TBM relevant temperatures, i.e. at 550°C and at accelerated flow rates (some cm/s)
 - Reliable / reproducible results in limited testing time (worst case)
- Behavior under thermal cycling
 - Test under gas atmosphere: Cycling between expected temperatures of 330°C (cooling gas inlet) and 550°C (neutron heating) \rightarrow Impact on coatings (cracks, ...?)
 - Cycling in Pb-15.7Li \rightarrow Impact of liquid metal
- T-permeation testing (in H_2 gas and H_2 /Pb-15.7Li)
 - Data urgently needed for ECA and ECX coated samples (as prepared, thermally aged)
 - Testing in H₂ gas should be performed in parallel to further optimization of coating and HT processes
- Irradiation
 - Neutron irradiation tests essential for application as TBM
 - Testing under relevant temperatures, i.e. 330°C and 550°C recommended

Up-scaling of fabrication process

Up-scaling of processes (deposition, HT) is mandatory in the foreseeable future \rightarrow Aim: Industrial scale processes

Conclusions

Coated and uncoated Eurofer after corrosion testing in Pb-Li (10,000 h)

bare Eurofer

ECA coated

ECA coated Eurofer, taken from [2]

ECA coated Eurofer after corrosion ECX coated Eurofer after corrosion testing in flowing Pb-Li (6,000 h)

T-permeation properties

- Significant T-permeation reduction in H₂ gas of AI-based _F barriers proved in the past (results deviated in the past) But: Low values in H_2/Pb -Li \rightarrow Correlated to fabrication defects (CVD, HDA)
- No data for new coatings made by ECA and ECX

uncoated in H₂-gas PRFs of coated to ¹/Pb-Li (VIVALDI

1.60 1000/T [1/K]

testing in flowing Pb-Li (2,000 h)

- Electrochemical processes (ECA and ECX) offer interesting properties for application as fabrication route for Al-based barriers on RAFM steels
- Industrial relevance given for these processes
- Compatibility to flowing Pb-15.7Li proved for ECA coated Eurofer for up to 12,000 hours
- Short-term compatibility tested also for samples with improved surface coated by ECX
- Further characterization of process steps is recommended to ensure development of a reliable fabrication route based on electrochemical plating
- Qualification efforts related to different tasks urgently needed, especially:
 - T-permeation data: No data available for new coatings made by ECA/ECX
 - Needed for optimization of coating and heat treatment processes

References:

[1] Konys, J. et al.: Comparison of corrosion behavior of EUROFER and CLAM steels in flowing Pb-15.7Li, Journal of Nuclear Materials 455 (2014), 491-495.

[2] Krauss, W. et al.: Corrosion barriers processed by Al electroplating and their resistance against flowing Pb-15.7Li, Journal of Nuclear Materials 455 (2014), 522-526.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

