

Institut für Angewandte Materialien Werkstoffprozesstechnik

Electrolytes for Li-Ion Batteries with Highly Improved Safety Issues

Andreas Hofmann*, Michael Schulz*, Sylvio Indris**, Thomas Hanemann*,***

- * Karlsruher Institut für Technologie, Institut für Angewandte Materialien Werkstoffprozesstechnik, Karlsruhe, Germany
- Andreas Hofmann, e-mail: andreas.hofmann2 @kit.edu, Tel. +49 (0)721-608-25920

 Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien Energiespeichersysteme, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- *** Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Freiburg, Germany

Summary

 Development of safe materials for energy storage (battery applications)

- Comprehensive study of LiBF₄ and LiTFSA in non-flammable ethylene carbonate – sulfone based liquid electrolytes
- Interaction of electrolytes and separator materials
- Significant improve of cell performance by use of lithium bis(oxalato) borate

Motivation

- Enhancement of the temperature stability of Li-lon battery electrolytes
- Influence of conducting salts on intrinsically safe electrolytes
- Improvement of the lithium ion mobility
- · Reduction of fire hazard after cell accident
- Reaching sufficient cell performance at moderate C-rates* up to 2C

Li-Ion Cell

- Functionality of Li-ion batteries:
- Negative graphite electrode
- Positive LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ electrode
- Electrolyte based on ethylene carbonate and sulfone derivative
- Cell design: coin cells (CR 2032)
- Separator: Whatman glass fiber GF/B
- Conducting salts:
 - LiBF₄: lithium tetrafluoroborate
 - LiTFSA: lithium bis(trifluoromethylsulfonyl)azanide

Properties of electrolyte solvents

- Extraordinary high flash points of >140 °C which enhance the intrinsic electrolyte safety
- High conductivity, almost independent of the conducting salt
- Lithium bis(oxalato) borate (LiBOB) reduces conductivity and increase viscosity
- Low crystallizing temperatures of the electrolyte mixtures

sample	composition	T _K	T _m	fp.	d	η	K
		°C	°C	°C	(25 °C)	(20 °C)	(20 °C)
		(DSC)	(DSC)		g cm ⁻³	mPa s	mS cm ⁻¹
LM1	EC/DMC (50:50)	NN	NN	24	1.2028	1.68	< 0.002
LM2	EC/sulfone derivative	-9.1	36.1	142	1.3234	4.42	< 0.006
EL-0	EC/DMC	-58.7	-20.5	31	1.27	4.44	10.7 ± 0.10
	LiPF ₆						
EL-1	EC/sulfone derivative	-47.7	23.5	143	1.36 ± 0.02	12.73	4.35 ± 0.05
	LiBF ₄						
EL-2	EC/sulfone derivative	-19.3	23.0	-	1.36 ± 0.03	14.55	4.04 ± 0.05
	LiBF ₄ + LiBOB						
EL-3	EC/sulfone derivative	-31.1	11.0	148	1.45 ± 0.03	20	4.37 ± 0.05
	LiTFSA						
EL-4	EC/sulfone derivative	-29.1	10.4	-	1.45 ± 0.03	19.93	4.08 ± 0.05
	LiTFSA + LiBOB						

Measurement of diffusion constants via PFG-NMR

- Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR)
- Lithium mobility is slightly reduced compared to EC/DMC + 1M LiPF₆
- Cationic and anionic species are affected in a similar manner
- Lithium transference numbers are almost identical compared to EC/DMC + 1M LiPF₆

	Diffusion constants determined by PFG-NMR neasurements.							
sample	D _{Li} x 10 ⁻¹¹ m ² s ⁻¹	D _F x 10 ⁻¹¹ m ² s ⁻¹	t _{Li} +					
EL-0 LP30; LiPF ₆	22.4 ± 0.3	25.5 ± 0.2	0.47 ± 0.01					
EL-1 LiBF ₄	6.55 ± 0.05	9.29 ± 0.05	0.41 ± 0.01					
EL-2 LiBF ₄ /LiBOB	6.32 ± 0.05	8.76 ± 0.05	0.42 ± 0.01					
EL-3 LiTFSA	4.85 ± 0.05	6.12 ± 0.05	0.44 ± 0.01					
EL-4 LiTFSA/LiBOB	4.71 ± 0.05	5.92 ± 0.05	0.44 ± 0.01					

Interaction with separator materials

- Drop shape analysis as method of investigation
- Different interaction of the electrolytes with separator materials according to surface polarity and surface tension
- ials after 5 h
- Almost no penetration of polyolefine separators
- Best results with particle coated separators: contact angle of <10° after 15 min

Performance in NMC|C cells

- Electrolyte formulation (conducting salts + solvent mixture) enables a cell cycling against graphite without additional additives
- Good capacity retention after 100 cycles (best: ~99,6%)
- At C-rate of 1,5C: ~78% of the initial specific capacity can be used
- By adding LiBOB, a significant improve in cell performance and cycle stability is obtained

Cycling tests (coin cells) of C|NMC cells (left) at 25°C with different current rates in a potential range of 3 – 4.2 V

Conclusions and outlook

- Development of non-flammable electrolyte formulations (flash point > 140 °C)
- Successful realization of full cells with up to date electrodes (NMC|C)
- Significant improvement of cell performance by adding lithium bis(oxalato) borate (LiBOB) as additive
- Outstanding cell performance and capacity retention
- Calorimetric measurements are under study

References

A. Hofmann et al., "Novel Ethylene Carbonate Based Electrolyte Mixtures for Li-Ion Batteries with Improved Safety Characteristics", under revision.

Patent pending: "Elektrolyt, Zelle und Batterie umfassend den Elektrolyten und dessen Verwendung" Patentanmeldung: 102014108254.5

Acknowledgements

We thank Brennstoffzellen- und Batterie-Allianz Baden-Württemberg for financial support within the project "Forschungsaversum 2013/1305".

 * C/n: current rate when the cell is charged or discharged completely in $n\,\mathrm{h}$