Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology

1105969

DEVELOPMENT OF A HIGH-FIDELITY MONTE CARLO THERMAL-HYDRAULICS COUPLED CODE SYSTEM SERPENT/SUBCHANFLOW – FIRST RESULTS

M. Daeubler, J. Jimenez and V. Sanchez

Institute for Neutron Physics and Reactor Technology, Karlrsuhe Insitute of Technology, Germany E-mail: miriam.daeubler@kit.edu, javier.jimenez@kit.edu, victor.sanchez@kit.edu

Motivation

- Provide reference solution to improve deterministic reactor
- Universal multi-physics interface introduced in Serpent 2 ullet

- simulators
- Serpent designed as lattice code

Development in framework of High Performance Monte Carlo lacksquare**Project (HPMC)**

Implementation of external coupling

- Based on type 1 multi-physics interface
- On-the-fly treatment of temperature dependence with Target Motion Sampling (TMS)
- Sub-channel thermal-hydraulics
- Coupling affects fuel, clad and coolant temperatures as well as coolant density

 $T_{dopp} = (1 - \alpha) T_{f,c} + \alpha T_{f,s}$

Coupled Convergence

 $\frac{\Delta X}{X} = \frac{X^n - X^{n-1}}{X^n} \le \varepsilon_X$

with X being eigenvalue, local Doppler temperature and local moderator density

 $X_n = (1 - \omega) X_{n-1} + \omega X_n$

Under-relaxation scheme

coupled iteration

Fig. 2: Relaxation Effect

Fig. 3: Flow chart of external coupling

Code-to-code benchmark with DYNSUB

- Infinite lattice of 3.66m high fresh 17x17-24 UOX 4.2wt% FA
- 18.74 MW thermal power, 82.12 kg/s coolant flow outlet pressure of 15.5 MPa, 1000 ppm soluble poison
- 300 K basis CE ENDF/B-VII.0 cross section libraries
- 20 axial layers in feedback mesh

	HZP k _{eff}	HFP k _{eff}	Power defect in reactivity ρ [pcm]
DYNSUB pin-by-pin SP3	1.12189	1.11230	862.4
Serpent/ SUBCHANFLOW	1.12042 ± 3·10 ⁻⁵	1.11264 ± 3⋅10 ⁻⁵	624.1±0.043

Fig. 4: UOX FA layout

Fig. 7: Comparison of axial coolant temperatures

Numerical Performance

- SUBCHANFLOW contribution < 0.01%
- Serpent:

	standard	HZP IFC	HFP IFC
Total Run Time	1.0	2.91	9.87
Initialization	1.0	1.47	2.16
Transport	1.0	2.97	10.21

Conclusion and Outlook

- Successfull verification (code-to-code benchmark with DYNSUB)
- Significant slow-down of Serpent from user point of view
- Deficiencies of TMS need to be resolved

Internal coupling

Completed, presented at PHYSOR **Serpent workshop**

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

