

Solubility and TRLFS study of Nd(III) and Cm(III) in dilute to concentrated NaCl-NaNO₃ and MgCl₂-Mg(NO₃)₂ solutions

M. Herm^{1,*}, X. Gaona¹, Th. Rabung¹, D. Fellhauer¹, C. Crepin², V. Metz¹, M. Altmaier¹, H. Geckeis¹

- ¹ Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
- ² Ecole National Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier CEDEX 5, France * michel.herm@kit.edu

Introduction

- Long–term performance assessment of deep geological nuclear waste repositories
 → prediction of chemical behavior of An and long lived FP in aqueous solutions needed.
- Waste disposal in rock-salt formations in USA; option under consideration in Germany → high [Na*], [Mg²*] and [Cl⁻] expected in water intrusion scenarios.
- Nitrate can be found in high concentrations (≥ 1 M) as part of certain waste forms
 → waste originated from reprocessing facilities.
- Previous complexation studies with nitrate focused on acidic conditions: no MgCl₂ systems considered.

Objectives of this work

- Assessment of NO₃⁻ effect on Ln(III)/An(III) solubility under repository relevant conditions.
- Development of chemical, thermodynamic and activity models for the system Ln(III)/An(III) in NaCl-NaNO₃ and MgCl₂-Mg(NO₃)₂ solutions.

Experimental

Solubility experiments

- Batch experiments in Ar atmosphere (22 ± 2°C)
- Undersaturation approach in 0.1–5.0 M NaCl–NaNO $_3$ and 0.25–4.5 M MgCl $_2$ –Mg(NO $_3$) $_2$ mixtures \rightarrow up to 7 M NO $_3$ ⁻
- pH range: 7.5 ≤ pH_m ≤ 13.0

- 6-12 mg Nd(OH)₃(am) solid phase used in each experiment
- Equilibration time: t ≤ 500 days
- pH measurements: pH_m = $\neg \log m_{H^+} = pH_{exp} + A_m$ [1]; A_m for Cl $^-$ NO $_3^-$ mixtures determined in this study
- [Nd(III)] measured by ICP–MS after 10 kD (2-3 nm) ultrafiltration

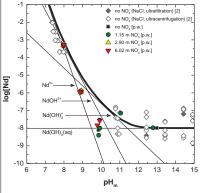
Normalized Intensity

Normalized Intensity

Solid phase characterization: XRD, SEM-EDX

Cm(III)-TRLFS

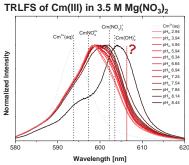
■ Sample preparation in Ar atmosphere (22 ± 2°C)


≥ 8.93.

in 5 M NaNO₃.

- TRLFS studies in 5.0 M NaCl–NaNO₃, 0.25 and 3.5 M $MgCl_2$ – $Mg(NO_3)_2$ mixtures \rightarrow up to 7 M NO_3 ⁻
- pH range: 1 ≤ pH_m ≤ 9
- [Cm(III)] ~1×10⁻⁷ M per sample

Results and discussion


Solubility of Nd(III) in 5.0 M NaCl-NaNO₃

- Very good agreement with nitrate-free solubility data reported in [2].
- No effect of NO₃⁻ on Nd(OH)₃(am) solubility in NaCl–NaNO₃ systems (even in 5 M NaNO₃).

Wavelength [nm]

TRLFS of Cm(III) in 5.0 M NaNO₂

Pure component spectra of 3.5 M MgCl₂-Mg(NO₃)₂

► CmNO₃²⁺ and Cm(NO₃)₂⁺ forming at pH_m \leq 8.14, in good agreement with thermodynamic calculations based upon [3].

> CmNO₃²⁺ prevails in 5 M

Cm(OH)₂⁺ dominates at pH_m

No clear evidence of relevant

ternary Cm-OH-NO₃ species

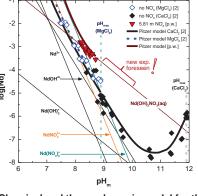
 $NaNO_3$ and $pH_m < 8.93$.

- New (ternary) species arising at pH_m ≥ 8.44.
- Three ligands complexing Cm(III) based upon red shift: 1 Cm(III): 2 OH⁻: 1 NO₃⁻.

Nitrate effect → genuine

complexation reaction!

speciation found in MgCl2-


→ two ternary Cm–OH–

NO₃ species forming.

Very complex Cm(III)

Mg(NO₃)₂ mixtures

Solubility of Nd(III) in 3.5 M MgCl₂-Mg(NO₃)₂

- Significant effect of [NO₃⁻] on Nd(OH)₃(am) solubility.
- Slope of solubility curve increases at pH_m ≥ 8.44 → change in number of OH⁻ involved in solubility reaction.
- Additional experiments in CaCl₂-Ca(NO₃)₂ (pH_{max} ~12) planned to confirm this trend.
- Handouts with experimental data at other ionic strength can be shown upon request.

Chemical and thermodynamic model for the system Nd3+/Cm3+-H+-Mq2+-OH⁻-Cl⁻-NO₂-

(preliminary Pitzer model available upon request)

- Solid phase controlling solubility: Nd(OH)₃(am) (XRD, SEM-EDX).
- ➤ Slope -1 in presence of NO_3^- and $pH_m \ge 8.44 \rightarrow 1 \ Nd(III) : 2 \ OH^-$ (solubility).
- Binary Cm(III)–NO₃ species relevant for pH_m ≤ 8.14 (TRLFS).
- Formation of Cm(OH)₂NO₃(aq) indicated by TRLFS at pH_m ≥ 8.44.

 $Nd(OH)_3(am) + H^+ + NO_3^- \Leftrightarrow Nd(OH)_2NO_3(aq) + H_2O$

Conclusion and outlook

600 Wavelength [nm]

- Nitrate significantly influences solubility of Nd(OH)₃(am) in concentrated and weakly alkaline MgCl₂-Mg(NO₃)₂ solutions at [Mg²⁺] ≥ 2.5 M and [NO₃⁻] ≥ 1 M.
- ✓ TRLFS data confirm that the effect of NO₃⁻ on solubility is resulting from complex formation reactions and not related to matrix effects (presence of NO₃⁻ instead of Cl⁻).
- A chemical model has been proposed including the formation of the ternary aqueous species Nd(OH)₂NO₃(aq) in equilibrium with solid Nd(OH)₃(am).
- Thermodynamic and activity models (Pitzer) for Nd³+/Cm³+-H*-Mg²+-OH⁻-Cl⁻-NO₃⁻ system are currently derived, based upon the proposed chemical model.
- √ Additional solubility experiments in CaCl₂-Ca(NO₃)₂ and use of advanced spectroscopic techniques (EXAFS/XANES) foreseen to confirm aqueous speciation.

References

M. Altmaier, V. Metz, V. Neck, R. Müller, Th. Fanghänel. Geochim. Cosmochim. Acta 67, 3595 (2003).
 V. Neck, M. Altmaier, Th. Rabung, J. Lützenkirchen, Th. Fanghänel. Pure Appl. Chem. 81, 1555 (2009).
 A. Skerencak, P. J. Panak, W. Hauser, V. Neck, R. Klenze, P. Lindqvist-Reis, Th. Fanghänel. Radiochim. Acta 97, 385 (2009).