

Solubility and TRLFS study of Nd(III) and Cm(III) in dilute to concentrated NaCl–NaNO₃ and MgCl₂–Mg(NO₃)₂ solutions

M. Herm^{1,*}, X. Gaona¹, Th. Rabung¹, D. Fellhauer¹, C. Crepin², V. Metz¹, <u>M. Altmaier¹</u>, H. Geckeis¹

- ¹ Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
- ² Ecole National Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier CEDEX 5, France

* michel.herm@kit.edu

Introduction

- Long-term performance assessment of deep geological nuclear waste repositories

 prediction of chemical behavior of An and long lived FP in aqueous solutions needed.
- Waste disposal in rock–salt formations in USA; option under consideration in Germany
 → high [Na⁺], [Mg²⁺] and [Cl⁻] expected in water intrusion scenarios.
- Nitrate can be found in high concentrations (> 1 M) as part of certain waste forms \rightarrow waste originated from reprocessing facilities.

Experimental

Solubility experiments

- Batch experiments in Ar atmosphere (22 ± 2°C)
- $\scriptstyle \bullet$ Undersaturation approach in 0.1–5.0 M NaCl–NaNO $_{3}$ and
- 0.25–4.5 M MgCl₂–Mg(NO₃)₂ mixtures \rightarrow up to 7 M NO₃
- pH range: 7.5 ≤ pH_m ≤ 13.0

Results and discussion

Solubility of Nd(III) in 5.0 M NaCI–NaNO₃

Solubility of Nd(III) in 3.5 M MgCl₂-Mg(NO₃)₂

MgCl.)

No effect of NO₃⁻ on Nd(OH)₃(am) solubility in NaCl–NaNO₃ systems

(even in 5 M NaNO₃).

Significant effect of [NO3-] on

Slope of solubility curve

increases at $pH_m \ge 8.44$

→ change in number of OH⁻

involved in solubility reaction.

Additional experiments in

CaCl₂-Ca(NO₃)₂ (pH_{max} ~12)

planned to confirm this trend.

Handouts with experimental

data at other ionic strength

can be shown upon request.

Nd(OH)₃(am) solubility.

data reported in [2].

Very good agreement

with nitrate-free solubility

6–12 mg Nd(OH)₃(am) solid phase used in each experiment

- Equilibration time: t ≤ 500 days
 - pH measurements: $pH_m = -\log m_{H^+} = pH_{exp} + A_m$ [1]; A_m for Cl⁻-NO₃⁻ mixtures determined in this study
- [Nd(III)] measured by ICP–MS after 10 kD (2-3 nm) ultrafiltration
- Solid phase characterization: XRD, SEM-EDX

Previous complexation studies with nitrate focused on acidic conditions; no MgCl₂ systems considered.

Objectives of this work

- Assessment of NO₃⁻ effect on Ln(III)/An(III) solubility under repository relevant conditions.
- Development of chemical, thermodynamic and activity models for the system Ln(III)/An(III) in NaCl-NaNO₃ and MgCl₂-Mg(NO₃)₂ solutions.

Cm(III)-TRLFS

- Sample preparation in Ar atmosphere (22 ± 2°C)
- TRLFS studies in 5.0 M NaCl–NaNO₃, 0.25 and 3.5 M MgCl₂–Mg(NO₃)₂ mixtures \rightarrow up to 7 M NO₃⁻
- pH range: 1 ≤ pH_m ≤ 9
- [Cm(III)] ~1×10⁻⁷ M per sample

Wavelength [nm]

Pure component spectra of 3.5 M MgCl₂-Mg(NO₃)₂

NaNO₃ and pH_m < 8.93. rightarrow Cm(OH)₂⁺ dominates at pH_m \ge 8.93.

CmNO₃²⁺ prevails in 5 M

- No clear evidence of relevant ternary Cm–OH–NO₃ species in 5 M NaNO₃.
- ▷ $CmNO_3^{2+}$ and $Cm(NO_3)_2^+$ forming at $pH_m \le 8.14$, in good agreement with thermodynamic calculations based upon [3].
- ➢ New (ternary) species arising at pH_m ≥ 8.44.
- Three ligands complexing Cm(III) based upon red shift:
 1 Cm(III) : 2 OH⁻ : 1 NO₃⁻.
- $\begin{array}{c} & & \\$
 - ➢ Nitrate effect → genuine complexation reaction!
 ➢ Very complex Cm(III)
 - ✓ very complex Cm(III) speciation found in MgCl₂– Mg(NO₃)₂ mixtures → two ternary Cm–OH– NO₃ species forming.

(preliminary Pitzer model available upon request)

10

Chemical and thermodynamic model for the system

Solid phase controlling solubility: Nd(OH)₃(am) (XRD, SEM–EDX).

11

no NO; (MgCl₂) [2]

no NO₃ (CaCl₂) [2]

Pitzer model MgCl, [2]

5.81 m NO₃ [p.w.] Pitzer model CaCl₂ [2]

itzer model [p.w.]

pH_{max} (CaCl₂)

12

- Slope –1 in presence of NO_3^- and $pH_m \ge 8.44 \rightarrow 1 Nd(III) : 2 OH^-$ (solubility).
- ➢ Binary Cm(III)−NO₃ species relevant for $pH_m \le 8.14$ (TRLFS).
- Formation of $Cm(OH)_2NO_3(aq)$ indicated by TRLFS at $pH_m \ge 8.44$.

$Nd(OH)_{3}(am) + H^{+} + NO_{3}^{-} \Leftrightarrow Nd(OH)_{2}NO_{3}(aq) + H_{2}O$

References

-2

-3

-5

-6

-7

-8

ld(NO₃)*

8

Nd³⁺/Cm³⁺–H⁺–Mq²⁺–OH⁻–Cl⁻–NO₃⁻

bН

og[Nd]

M. Altmaier, V. Metz, V. Neck, R. Müller, Th. Fanghänel. *Geochim. Cosmochim. Acta* 67, 3595 (2003).
 V. Neck, M. Altmaier, Th. Rabung, J. Lützenkirchen, Th. Fanghänel. *Pure Appl. Chem.* 81, 1555 (2009).
 A. Skerencak, P. J. Panak, W. Hauser, V. Neck, R. Klenze, P. Lindqvist-Reis, Th. Fanghänel. *Radiochim. Acta* 97, 385 (2009).

Conclusion and outlook

- ✓ Nitrate significantly influences solubility of Nd(OH)₃(am) in concentrated and weakly alkaline MgCl₂-Mg(NO₃)₂ solutions at [Mg²*] ≥ 2.5 M and [NO₃⁻] ≥ 1 M.
- TRLFS data confirm that the effect of NO₃⁻ on solubility is resulting from complex formation reactions and not related to matrix effects (presence of NO₃⁻ instead of CI⁻).
- ✓ A chemical model has been proposed including the formation of the ternary aqueous species Nd(OH)₂NO₃(aq) in equilibrium with solid Nd(OH)₃(am).
 ✓ Thermodynamic and activity models (Pitzer) for Nd³+/Cm³+_H+-Mg²+_OH⁻-Cl⁻-NO₃⁻
- system are currently derived, based upon the proposed chemical model.
- ✓ Additional solubility experiments in CaCl₂-Ca(NO₃)₂ and use of advanced spectroscopic techniques (EXAFS/XANES) foreseen to confirm aqueous speciation.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Acknowledgements: M. Böttle, F. Geyer and E. Soballa are kindly acknowledged for their technical support during this study.

www.kit.edu