

Solubility and spectroscopic study of An^{III}/Ln^{III} in dilute to concentrated Na–Mg–Ca–Cl–NO₃ solutions

Karlsruhe Institute of Technology

<u>M. Herm^{1,*}, X. Gaona¹, Th. Rabung¹, D. Fellhauer¹, C. Crepin², K. Dardenne¹, M. Altmaier¹, H. Geckeis¹</u>

¹ Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany

² Électricité de France SA (EDF), 22–30 Avenue de Wagram, 75008 Paris, France

* michel.herm@kit.edu

Introduction

- Long-term performance assessment of deep geological nuclear waste repositories \rightarrow prediction of chemical behavior of An and long lived FP in aqueous solutions needed.
- Waste disposal in rock-salt formations: WIPP in USA, under consideration in Germany \rightarrow high [Na⁺], [Mg²⁺] and [Cl⁻] expected in water intrusion scenarios.
- Nitrate can be found in high concentrations (≥ 1 M) as part of certain waste forms \rightarrow i.e. waste originated from reprocessing facilities.
- Previous complexation studies with nitrate focused on acidic conditions; no MgCl₂ systems considered.

Objectives of this work

- Assessment of NO₃⁻ effect on Ln(III)/An(III) solubility under repository relevant conditions.
- Development of chemical, thermodynamic and activity models for the system Ln(III)/An(III) in NaCl–NaNO₃, MgCl₂–Mg(NO₃)₂ and CaCl₂–Ca(NO₃)₂ solutions.

Experimental

Solubility experiments

• pH measurements: $pH_m = -\log m_{H^+} = pH_{exp} + A_m$ [1]; A_m for Cl⁻–NO₃⁻ mixtures determined in this study

Cm(III)–TRLFS

- Batch experiments in Ar atmosphere (22 ± 2°C)
- Undersaturation approach in 0.1–6.02 m NaCl–NaNO₃, $0.25-5.2 \text{ m MgCl}_2-Mg(NO_3)_2$ and 2.91-4.02 m $CaCl_2 - Ca(NO_3)_2$ mixtures \rightarrow up to 8.0 m NO_3^-
- pH range: $7.5 \le pH_m \le 13.2$
- $6-12 \text{ mg Nd}(OH)_3(am)$ solid phase in each experiment
- Equilibration time: $t \le 500$ days

Results and discussion

Solubility of Nd(III) in 5.61 m NaCl–NaNO₃

- m_{Nd(III)} measured by ICP-MS after 10 kD (2-3 nm) ultrafiltration
- Solid phase characterization: XRD, SEM-EDX

Nd–L_{III} EXAFS @ ANKA (Karlsruhe, Germany)

- 4.06 m MgCl₂–Mg(NO₃)₂ with 5.81 m NO₃⁻; $pH_m = 8.15$ • $m_{Nd(III)} = 1.49 \times 10^{-3}$ m after 10 kD (2–3 nm) ultrafiltration
- Sample preparation in Ar atmosphere (22 ± 2°C)
- TRLFS studies in 5.61/6.02 m NaCl–NaNO₃, 0.25/4.1 m $MgCl_2-Mg(NO_3)_2$ and 4.02 m $CaCl_2-Ca(NO_3)_2$ mixtures \rightarrow up to 8.0 m NO₃⁻
- pH range: $1 \le pH_m \le 9$
- [Cm(III)] ~1×10⁻⁷ M per sample

 $Nd-L_{III} EXAFS in 4.06 m MgCl_2-Mg(NO_3)_2$

- Peak at ~4 Å is properly fitted with Mg as backscatterer.
- EXAFS evaluation shows no Nd–Nd interaction.

12 13 14 15 6 11 10 pH_m

Solubility of Nd(III) in 4.06 m MgCl₂–Mg(NO₃)₂ & 4.02 m CaCl₂–Ca(NO₃)₂

 $NO_3^$ effect No of on Nd(OH)₃(am) solubility in $CaCl_2$ – $Ca(NO_3)_2$ systems.

good

data reported in [2].

with nitrate-free solubility

 $Nd(OH)_3(am)$ solubility in

NaCI–NaNO₃ systems.

agreement

- Significant effect of $m_{NO3^{-}}$ on $Nd(OH)_{3}(am)$ solubility in $MgCl_2 - Mg(NO_3)_2$ systems.
- Slope analysis indicates the formation of aqueous $Mg-Nd-OH-NO_3$ species with stoichiometries Nd:OH 1:1 ($pH_m \leq 8.3$) and Nd:OH 1:2 (pHm > 8.3).

- No ternary/quaternary species needed to explain TRLFS observations in $NaCI-NaNO_3$ and $CaCl_2-Ca(NO_3)_2$ (data not shown).
- Ternary/quaternary species do form in $MgCl_2-Mg(NO_3)_2$ with $pH_m \ge 4.94$.

Pure component spectra of 4.06 m MgCl₂–Mg(NO₃)₂

- \blacktriangleright Nitrate effect \rightarrow genuine complexation reaction!
- Very complex Cm(III) speciation found in MgCl₂- $Mg(NO_3)_2$ mixtures.

Chemical and thermodynamic model for the system $Ln^{3+}/An^{3+}-H^{+}-Na^{+}-Mg^{2+}-Ca^{2+}-OH^{-}-CI^{-}-NO_{3}^{-}$

- \succ Solid phase controlling solubility: Nd(OH)₃(am) (XRD, SEM-EDX).
- \succ Ternary/quaternary species with slope -1 and -2 in MgCl₂-Mg(NO₃)₂ systems.
- Formation of Mg[An^{III}/Ln^{III}OHNO₃]³⁺ and Mg[An^{III}/Ln^{III}(OH)₂NO₃]²⁺ indicated by Cm(III)–TRLFS and Nd–L_{III} EXAFS.

 $An^{II}/Ln^{II}(OH)_3(am) + 2H^+ + NO_3^- + Mg^{2+} \Leftrightarrow Mg[An^{II}/Ln^{II}OHNO_3]^{3+} + 2H_2O$ $\log *K^{\circ}_{s,(1,1,1,1)} = 10.80; \ \beta^{(0)} = 0.93; \ \beta^{(1)} = 4.30; \ C^{\Phi} = 0$

 $An^{III}/Ln^{III}(OH)_3(am) + H^+ + NO_3^- + Mg^{2+} \Leftrightarrow Mg[An^{III}/Ln^{III}(OH)_2NO_3]^{2+} + H_2O_3^{1-1}$ $\log *K^{\circ}_{s,(1,1,2,1)} = 1.56; \ \beta^{(0)} = 0.18; \ \beta^{(1)} = 1.60; \ C^{\Phi} = 0$

Ternary Pitzer paramter generally set to 0.

Interaction of the cation with the anion is assumed to be almost the same for chloride and nitrate.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Conclusion

- \checkmark Nitrate significantly influences solubility of Nd(OH)₃(am) in concentrated and weakly alkaline MgCl₂–Mg(NO₃)₂ solutions at $m_{Mq^{2+}} \ge 2.83$ m, $m_{NO_3^-} \ge 1.13$ m and pH_m 8–9.
- \checkmark No effect of nitrate in NaCl–NaNO₃ and CaCl₂–Ca(NO₃)₂ solutions hinting towards the participation of Mg²⁺ in the complex formation reaction.
- \checkmark Cm(III)–TRLFS and Nd–L_{III} EXAFS further confirm the participation of Mg²⁺.
- ✓ The chemical model proposed includes the formation of the quaternary aqueous species Mg[An^{III}/Ln^{III}OHNO₃]³⁺ and Mg[An^{III}/Ln^{III}(OH)₂NO₃]²⁺ in equilibrium with solid $Nd(OH)_3(am)$.
- ✓ Thermodynamic and activity models (Pitzer) derived for the system Nd³⁺/Cm³⁺–H⁺– $Mg^{2+}-OH^{-}-CI^{-}-NO_{3}^{-}$.

References:

[1] M. Altmaier et al. *Geochim. Cosmochim. Acta* **67**, 3595 (2003). [2] V. Neck et al. *Pure Appl. Chem.* **81**, 1555 (2009). [3] A. Skerencak et al. *Radiochim. Acta* **97**, 385 (2009).

