

Karlsruhe Institute of Technology

Institute for Nuclear Waste Disposal (INE)

Solubility and hydrolysis of NpO₂(am) and PuO₂(am) in dilute to concentrated NaCl solutions

J. Schepperle, D. Fellhauer, X. Gaona, M. Altmaier, H. Geckeis

Introduction

- Water intrusion into nuclear waste repository: \bullet aquatic radionuclide chemistry and thermodynamics highly relevant for reliable safety assessment.
- Impact of various solution conditions have to be \bullet considered, e.g. pH_m , ionic strength I_m , ligands, etc.

Solubility of NpO₂(am)

- Actinide elements (Pu, Np): \bullet
 - highly relevant contribution to radiotoxicity for > 10⁵ a
 - complex redox chemistry: An(III / IV / V / VI) redox-neutral + reduc. cond.: An(IV), An(III)
- Studies on the solubility and speciation of An mandatory to understand the redox chemistry
- Previous studies on solubility and hydrolysis of $NpO_2(am)$ and $PuO_2(am)$:
 - comprehensive studies over a wide range of I_m and pH_m values not available
 - data missing for pH_m 3 6
 - large uncertainty in reported data for Np(IV) for $pH_m > 6$

Experimental

- Synthesis of NpO₂(am): \bullet
 - Pure Np(IV) stock solution prepared by electrolysis
 - NpO₂(am) precipitation with NaOH

- - Exp [Np(IV)] at/below LSC det. lim. (in line with literature data).
 - HR-ICPMS analysis ongoing to quantify Np(IV) equilibrium concentration

Thermodynamic calculations

- $\log *\beta_{(1,x)}^{\circ}$ and $\log *K_{s,0}$ taken from [2001NEC/KIM] and [2003GUI/FAN]

- Synthesis of PuO₂(am): \bullet
 - Pure Pu(VI) stock solution prepared by electrolysis
 - Slow reduction with hydroquinone to Pu(IV) at $pH_m = 8$ ($E_h \approx 50$ mV)
 - XRD characterization of the resulting solid phase
- Batch solubility samples: \bullet
 - Ar glove box: very low O_2 and CO_2 levels
 - 1-3 mg NpO₂(am) or PuO₂(am) per sample
 - [NaCl] = 0.1, 0.5, 2, 4, 5 mol/L
 - $pH_m = -log[H^+] = 2 13$ (partly stabilized by pH) buffers MES and PIPES)
 - Redox buffer (Np exp.): Sn(II), NaS_2O_4 , AH_2QDS
 - Redox buffer (Pu exp.): H_2Q , AH_2QDS
 - Equilibration time (Np exp.) 0-60 days (on-going)
- **Measurements:** \bullet
 - 237Np and ²⁴²Pu determined by liquid scintillation counting after ultrafiltration (10kD)
 - pH_m with combined glass electrodes (Ross)

- **Electrochemical cell**

 $PuO_{2}(OH)_{2}(s)$

PuO_{2+x}(s,hyd)

PuO₂(am)

Pu(OH),

Experimental pH_m and E_h in the stability field of Pu(IV)

 \rightarrow conditions chosen to favor the slow in-situ reduction

2 3 4 5 6 7 8 9 10 11 12 13

of Pu(VI) and precipitation of $PuO_2(am)$

"Pu(VI)" + Hydroquinone

── Pu(III)aq ⇔ Pu(IV)aq

1,0

0,8

0,6

0,4

0,2

0,0 **ய**ீ

-0,2

-0,4

-0,6

 $[Pu]_{tot} = 1.0 \cdot 10^{-4} \text{ M in } 0.1 \text{ M NaCl}$

Pu(VI)aq

Pu(III)aq

pe

-10

SIT ion interaction coefficients estimated in [2001NEC/KIM]

- XRD spectra shows sharper peaks than prepared with electrolysis \rightarrow PuO₂(am) more crystalline
- Solid phase to be used in batch solubility samples (in preparation)

www.kit.edu

- Summary and outlook
- $E_{\rm h}$ with Metrohm combination platinum electrodes

References

[2001NEC/KIM] V. Neck, J. I. Kim, Radiochimica Acta, 2001, 89, 1–16.

[2003GUI/FAN] Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A., Grenthe, I., Rand, M.H. (2003) Chemical Thermodynamics 5. Update on the Chemical Thermodynamics

- First systematic study of the solubility and hydrolysis of NpO₂(am) in dilute to concentrated NaCl solutions over the entire pH_m range
 - Np(IV) solubility data at $I_m < 0.5$ in good agreement with thermodynamic calculations.
 - Data at $I_m > 0.5$ not yet in equilibrium (after 60 days)
 - Np(IV) solubility experiments to be complemented with accurate solid phase characterizaton (XRD, SEM–EDX, TEM), liquid-liquid extraction and UV-vis investigations (for samples with higher [Np])
- $PuO_2(am)$ solid phase prepared and ready to start solubility experiments
- Np(IV) and Pu(IV) investigations will be extended to carbonate containing solutions: investigation of An(IV)- $OH-CO_3$ complexes
- Pu investigations will be extended to strongly reducing solutions in the absence and presence of carbonate

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

