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Cooler City – Cleaner City? 
Urban Heat Island Versus Air Quality  - A numerical modelling study for a European city  

1. Motivation 

• officially about 7 billion people live on earth; growing rate: 78 
million/year; around 60 % live in cities 

• large urban areas impact surface-atmosphere exchange processes 
(UHI)  

• UHI’s raise demands of energy for air conditioning during summer 
periods  combustion processes  greenhouse gas emissions 
(EPA, 2013) 

• primary pollutants include SO2, NOx, PM, CO etc.  contribution 
to complex air quality problems such as ground level ozone 
(SMOG), fine PM or acid rain 

• Climate change will have specific urban expressions: altered urban 
heat island phenomena, impacts on regional circulation systems, 
air pollution levels, radiative feedback mechanisms of aerosols and 
human health 

 

 

 

 

2. Research Focus 

The Urban Heat island 

• The tendency for an urbanized area to remain significantly warmer 
than its rural surroundings (Oke 1982)  

• Additional heat sources, roughness effects and albedo of urban 
surfaces  ‘design’  specific atmospheric dynamics  urban-rural 
circulation patterns 

• Regional secondary circulation patterns  transport of rural air 
pollutants (e.g. BVOC’s) into city  reaction with urban pollutants  

• Specific urban planning strategies can reduce negative effects (Taha 
1997) 

UHI mitigation scenarios 

• Urban planning strategies:  

• effect of white roofs  by increasing the albedo from 0.2 to 0.7 
(Albedo) 

• replace urban surface by natural vegetation (grass) one park of 20 
km² (Central Park) and several parks of the same accumulated size 
(many parks) 

• decrease building density by 20% 

 

Effect on urban air quality 

Funded by the EU- Project “UHI - Development and application of mitigation and 

adaptation strategies and measures for counteracting the global UHI 

phenomenon” (3CE292P3) (2011-2014). 

3. Urbanization of a mesoscale model 
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Fig. 1: WRF-Chem domain and map of land cover (left); schematic image of two WRF urban canopy 
models and evaluation of temperature (right)   

Querschnitt durch das Stadtzentrum 
‚‘Reality‘ 
White roofs 
White roofs and walls 
Big Park 

Source: Klimaatlas Region Stuttgart 

Stuttgart Hbf 

Fig. 3: Development of 2m potential temperature over cross section 
(left) and for the urban area of Stuttgart (right)  August 13th 2003  8 pm 
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Fig. 4: Difference in potential 2m air temperature between ‘Control’ and ‘Scenario’ 
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4. WRF-Chem 
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Fig. 6: Comparison between simulated  WRF-Chem variable at a central 
urban grid point and average value of 4 observations within that 3x3 km 
cell for an average daily cycle. From up left to right: O3, NO2, NO and CO Fig. 5: WRF-Chem domain and map of NO emissions 
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Primary pollutants Secondary Pollutants Ozone – 1500 h 

RADM2/ MADE SORGAM, NOAH LSM, BEP urban canopy model, MOZART/MEGAN chemical BC and IC,  
MACC 2003-2007 emission inventory, FastJ Photolysis, modelling time Aug 9 – Aug 18 2003 

Fig. 7: Mean Difference between control- and scenario run [ppb] for modelling period for carbon monoxide (left), ozone (middle) and difference in peak ozone concentration at 1500 h (right)    
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Fig. 8: Diurnal cycle of CO concentration for 3 scenarios  
and correlation between TKE and temperature/CO 
concentration  at the lowest model level  
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Fig. 10: Diurnal cycle of O3 for 3 scenarios (top), diurnal cycle of 
reflected SW radiation (middle), correlation between reflected 
SW and  photolysis rate in the lowest model level (bottom) 

5. Conclusion 

• UHI mitigation strategies generate negative effects on primary and some secondary pollutants 

• Reduced temperature leads to a reduction of turbulence  increase of primary pollutants 

• Reduced temperature leads to a reduction of chemical reactivity  decrease of ozone 

• Higher albedo leads to an increased amount of reflected SW radiation  increase of peak ozone 
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Fig. 9: Diurnal cycle of O3 for 3 scenarios (top), correlation 
of temperature and O3 (middle), correlation between NO 
and  O3 in the lowest model level (bottom) 

Fig. 2: Development of 2m potential temperature over urban area of 
Stuttgart  August 13th 2003  8 pm 
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