

Institut für Angewandte Materialien Werkstoffkunde

Investigation of the interaction of separator materials and electrolyte solvents for Li-ion batteries

Andreas Hofmann*, Matthias Migeot*, Eva Thissen*, Ceylan Yildiz*, Michael Schulz*, Thomas Hanemann*,**

Karlsruher Institut für Technologie, Institut für Angewandte Materialien - Werkstoffprozesstechnik, Karlsruhe, Germany Andreas Hofmann, e-mail: andreas.hofmann2@kit.edu, Tel. +49 (0)721-608-25920

Universität Freiburg, Professur für Werkstoffprozesstechnik, Institut für Mikrosystemtechnik (IMTEK), Freiburg, Germany

Summary

- Setup of drop shape analysis under inert conditions (water reduced conditions)
- Measurement of contact angles and solvent uptake with commercial separators
- Correlation of wetting characteristics of separator materials and solvents

Motivation

- Time consuming process of electrolyte filling during the cell preparation
- Wetting characteristics of separators with new electrolyte formulations are different
- Separators can be very hygroscopic based on nano- and micro-particles onto the separator surface
- Quantifying of the electrolyte-separator interaction
- Necessity for separator developing

Solvents and separators

Ionic liquids

Glass fiber separators Polyolefine separators with and without ceramic particles

without ceramic particles

Measuring of contact angle

PET-based separators with and

- Sulfur-containing solvents (sulfolane) Organic carbonates and carbonate
- mixtures EC/DMC (1:1 wt.-%) in comparison

Experimental setup

Data processing (Dataphysics)

Measurement device of the dewpoint: < -60 °C Drop shape analysis Glovebox: • PETG for optimal solvent resistanceVacuum for loading and unloadingFlow chamber

Air drying

Solvent uptake by separators

- Separator is fixed on microscope slides
- Double faced adhesive tape (3M, thickness: 50 mm, temperature stable up to 150 °C)
- Drop (2.75 ml) is put on the surface •
- Contact angle after 10 seconds •
- Extensive drying of the solvents and separators
- At least 10 drops per separator material

- Interaction of novel electrolyte solvents with commercial separators
- Chemical properties of solvents (conductivity, electrochemical window)
- Wetting of aluminum, glass, separators
- Time dependency of wetting characteristics:

Electrochemical properties of solvents

solvent	δ [g cm ⁻³] 20 °C	η [mPa s] 20 °C	κ[mS cm ⁻¹] 20 °C	Fp I°C1	°√ Ľ	
	20 0	20 0	20 0	[0]		
Ionic liquid 1	1.5208	48.65	7.49	>250		
lonic liquid 2	1.4096	115.13	1.87	270	CH CH	
Sulfolane	1.2656	11.36	< 0.003	151	Sulfolane Devolution	
Mixture 4*	1.2673	14.47	< 0.02	> 140	Propylene carbona	
Mixture 5*	1.3234	4.43	< 0.006	142		
Propylene carbonate	1.2048	3.48	< 0.02	126	0 I	
Diethylcarbonate	0.9750	0.752	< 0.003	32	\sim \downarrow \sim	
EC/DMC	1.2028	1.68	< 0.002	24	H3C TO TO TCH3	

- High flash points for safety enhancement of electrolytes
- . Viscosity between 1 - 120 mPa-s at 20 °C

Measurement of the contact angles

Contact angle of the reference (EC/DMC) after 10 s between 8±1° and 59±1° in dependence of separator materia

- Contact angles of all solvents between 5° und 117° in dependence of solvent and separator material
- Significant improvement of the wetting characteristics by ceramic particles
- Dependence of the contact angle from separator porosity (the smaller the porosity the poorer the wetting characteristics)
- Small contact angles (13°) can be obtained also with ionic liquids

Solvent-uptake by separators: time dependency

Separator	Contact angle after dropping [°]	Contact angle after 5.6 h [°]	Porosity [%]	sorpivity [x10 ⁻² mm min ^{-1/2}]	R ²	specific surface area [m² g ⁻¹]			
S-2*	42.1	7.5	-	1.03	0.991	1.52			
S-3	104.2	51.1	39	-	-	56.5			
S-4	78.6	60.1	39	-	-	23.7			
S-5	80.7	59.8	45	0.31	0.979	50.5			
S-6	102.7	64.3	42	0.56	0.908	42.4			
S-7*	95.5	5.0	-	1.59	0.978	23.7			
S-8*	108.1	55.1	59	1.00	0.895	3.90			
S-9*	105.9	34.0	59	2.00	0.991	1.55			
S-10*	100.2	10.4	55	1.93	0.920	2.76			
S-11	104.2	51.1	60	0.16	0.939	0.54			

- Solvent mixture: Mixture 5
- Different solvent uptake in dependence of the separator
- Decrease of the contact angle with time
 - Calculation of sorptivity $S = V \cdot A^{-1} \cdot t^{1/2}$ as an estimation of the solvent uptake

Conclusions

- Solvents based on safety and high voltage applications
- Setup of drop shape analysis under inert conditions (water reduced conditions)
- Measurement of contact angles and solvent uptake with commercial separators
- Correlation of wetting characteristics of separator materials and solvents

Acknowledgements

We thank Brennstoffzellen + Batterie-Allianz Baden-Württemberg for financial support. We acknowledge IoLiTec Ionic Liquids Technologies GmbH for kindly providing ionic liquids and Dr. Martin Tosoni for helpful

