
Comparison of Sintering Aids for Low Temperature Sintering of Hard PZT

A. Medesi¹, T. Greiner¹, C. Megnin¹, T. Hanemann^{1,2}

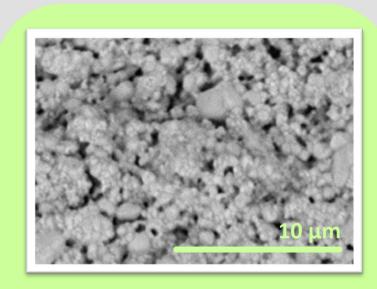
¹Laboratory for Material Process Technology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany ² Laboratory for Material Process Technology, Institute of Applied Materials, Karlsruhe Institute of Technology - KIT, Germany

Introduction

- PZT (PbZr_xTi_{1-x}O₃) is the most commonly used piezo ceramic
- 100 µm thick PZT-films were fabricated by tape casting methode and sintered in air for 3h @ 900 °C instead of normally needed 1200 °C
- Used Technique:

LIQUID-PHASE SINTERING

Acceleration of densification of the major phase particles (PZT) by adding of lower melting sintering aids which form a liquid phase and facilitate the rearrangement and grain growth of the matrix phase at significantly reduced sintering temperatures.

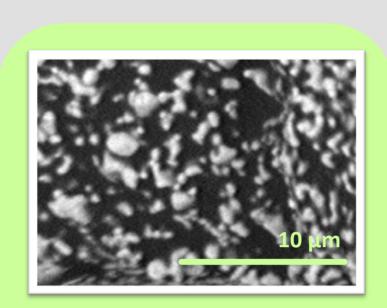

Advantages of LT-Sintering of PZT

MATERIAL COMPATIBILITY	STABILIZATION OF ELECTROMECH. PROP.	REDUCTION OF PROCESS COSTS
Co-firing of	Evaporation of volatile PbO out of	Less cost-effective electrodes
multilayer stacks	PZT during the sintering process is	from Ag instead of Pt or Ag/Pd-alloys
made from PZT- and	suppressed, so that stoichiometric	Less environmental pollution
LTCC-layers or	composition of PZT is stabilized and	through evaporation of Pb-compounds
internal electrodes	subsequent piezoelectric	Less energy consumption
from pure Ag	components become more reliable	through lowered sintering temperatures

Results

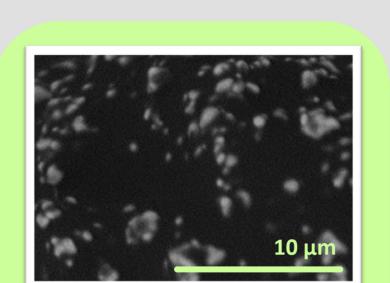
Sintering aid amount

Contents of Li-compounds above 1 vol-% deteriorate the piezoelectr. prop. of PZT.

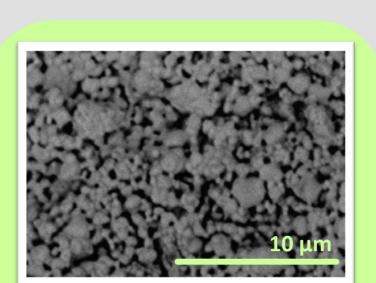


+ Bi₂O₃ $T_{\rm m} = 817 \, {\rm ^{\circ}C}$

Amount	2 vol-%	5 vol-%
ρ [%]	4.8	5.6
О ₀ [MPa]	22	53
Ø-d ₃₃ [pC/N]	29	34
max. d ₃₃	42	71

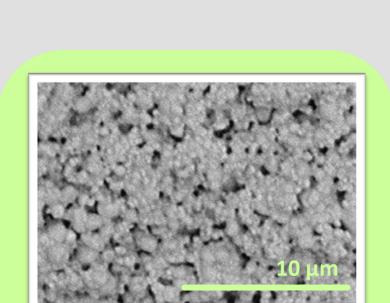

Piezoelectr. Properties

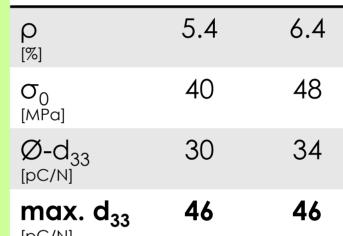
A sufficiently dense microstructure and the highest piezoelectric charge constant d₃₃ of 181 pC/N provide the @ 900 °C for 3h sintered PZT-films with sintering aid LBCu (2 vol%).



+	Li₂CO ₂ T _m = 720 °C	3
ount	2 vol-%	5

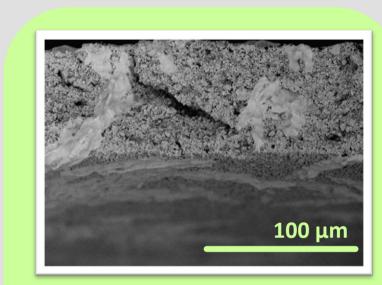
Amount	2 vol-%	5 vol-%
P [%]	4.9	5.7
О ₀ [MPa]	31	34
Ø-d ₃₃ [pC/N]	79	53
max. d ₃₃	146	82

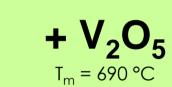

	- Li₂O _m = 1427 °C	
Amount	2 vol-%	5 vol-%
ρ [%]	5.3	5.7
σ ₀ [MPa]	29	24
Ø-d ₃₃ [pC/N]	34	17
max. d ₃₃	74	37

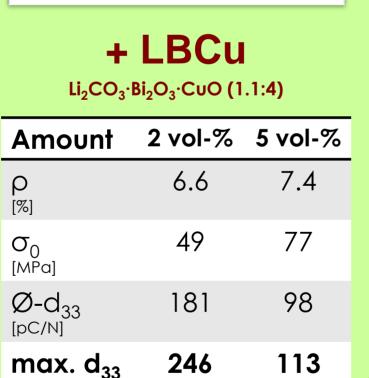

+ MnO ₂					
	T _m = 535 °C				
mount 2 vol-% 5 vol-%					
)	4.2	4.5			
71					

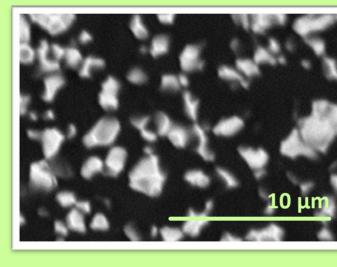
PZT

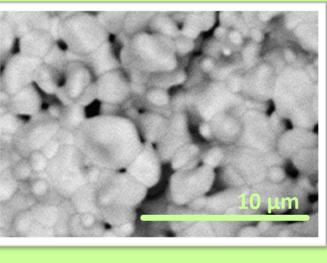
[MPa]	
σ ₀ 12 10	
ρ 4.2 4.5 [%]	



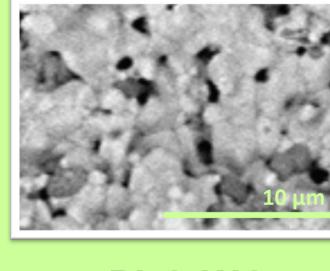

+ PbO T_m = 888 °C Amount 2 vol-% 5 vol-% 5.4


Mechanical stability


High characteristic breaking strengths σ_0 above 50 MPa were obtained for addition of V₂O₅, LBCu, CuO and higher amounts of PbO, Bi_2O_3 or PbO·WO₃



Amount	2 vol-%	5 vol-%
ρ [%]	5.7	5.8
σ ₀ [MPa]	61	51
Ø-d ₃₃ [pC/N]	51	67
max. d ₃₃	70	140



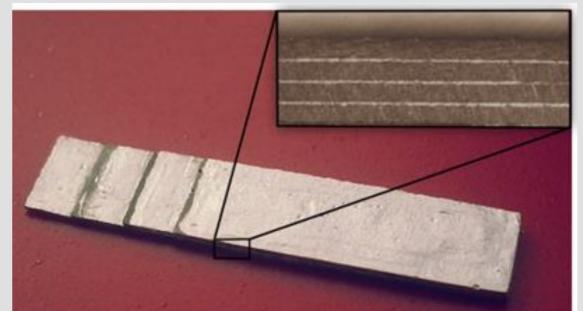
+ CuO T _m = 1326 °C			
Amount	2 vol-%	5 vol-%	
P [%]	5.8	6.0	
О ₀ [MPa]	66	58	
Ø-d ₃₃ [pC/N]	136	134	
max. d ₃₃	196	262	

+ Cu ₂ O-PbO eutectic mixture, T _m = 680 °C			
Amount	2 vol-%	5 vol-%	
ρ [%]	5.7	5.6	
σ ₀ [MPa]	45	36	
Ø-d ₃₃ [pC/N]	126	46	
max. d ₃₃	151	52	

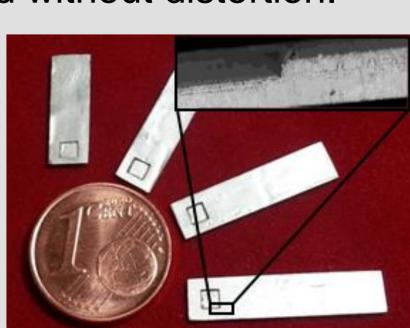
+ PbO·WO₃

Amount	2 vol-%	5 vol-%
ρ [%]	5.4	7.0
σ ₀ [MPa]	26	55
Ø-d ₃₃ [pC/N]	59	143
max. d ₃₃	67	185

V₂O₅ -Ligaments


Addition of V_2O_5 increases the mechanical stability by formation of V_2O_5 -ligaments through the still porous PZTmatrix. Densification of the PZT particles remains low.


Conclusion


- Most effective sintering aid for hard PZT is the ternary system LBCu (Li₂CO₃:Bi₂O₃:CuO, 1:1:4).
- Highest densification progress of PZT particles with a relative density of 97 ± 3 % and highest characteristic breaking strength of PZT-films sintered @ 900 °C was achieved with 5 vol-% LBCu as sintering aid.
- ➤ Highest piezoelectric charge constant in average (181 pC/N) was measured for PZT-films with 2 vol-% LBCu.
- > The combination of hard PZT and CuO leads to increased piezoelectric properties, while contents of Li-compounds in the investigated volume range deteriorate the piezoelectric properties of PZT significantly.

Outlook

Development of a new fabrication method for piezoelectric bimorphs and multilayer by Co-Casting a whole stack of alternating sheets from PZT and Ag instead of Tape Casting of single PZT green tapes, which have to be metallized individually, stacked properly and laminated without distortion.

Co-fired multilayer manufactured from Co-casting setup on First co-casted bimorphs metallized single green tapes. Access lab scale for multilayer tailored by punching out. to internal Ag-electrodes realized by stacks manufacturing Access to the internal Agstepped stacking with the problem that out of alternating cera- electrode was made by the undermost layer is not stable.

mic and metal layers.

laser treatment.

