

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology (INR) Hermann-von-Helmholtz-Platz 1 76344, Eggenstein-Leopoldshafen, Germany

Safety Analysis of LOCA Accident for the DEMO HCPB Blanket

Q. Kang, D. Carloni, Sz.Kecskés

Introduction

The Loss of Coolant Accident (LOCA) caused by a pipe break of Helium Coolant System (HCS) in Helium Cooled Pebble Beds Blanket system (HCPB) has been analyzed.

- Six cases have been studied taking into account both ex-vessel and in-vessel LOCAs.
- Thermal expansion behaviour of Back Supporting Structure (BSS) with the most severe LOCA temperature has been studied.

Finite element model

Geometry and mesh

Results and analyses

- **Thermal simulation:** Steady-state analysis
 - The most severe accident is Ex-vessel LOCA with PFCs at 500 °C (Case 2)
 - The maximum temperature 842 °C occurs within the breeding zone

Case 3	261.2-777.4	534.4-777.4	543.0-777.8	261.2-375.0
Case 4	257.2-724.8	519.3-724.7	526.8-725.2	257.2-365.6
Case 5	289.6-818.6	596.5-818.6	604.4-818.9	289.6-415.0
Case 6	280.5-763.6	582.9-763.6	589.1-764.2	286.5-408.4

Structure mechanical simulation

- Using temperature field from thermal simulation
- Thermal stresses in FW, BP and BSS are admissible
- 37.2 mm displacement in poloidal and radial direction in one BSS segment

Verify stress compliance with limits defined by RCC-MR

Path	FW	BSS	BP	
$\overline{P_L + Q_L}$ [MPa]	73.3	141.4	421.0	
$\overline{P_L + P_B + Q + F}$ [MPa]	159.2	364.5	541.4	
$\overline{P_{L} + P_{B} + Q}$ [MPa]	148.5	240.6	477.2	
T _m [°C]	625.2	376.9	402.2	
S _e ^D (T _m) [MPa]	-	470	470	
S _d ^D (T _m) with F [MPa]	793.3	786.8	784.4	
S _d ^D (T _m) without F [MPa]	231.9	786.8	784.4	
1 (IPFL) SF	-	0.3	0.89	
2 (ILF) SF	0.2	0.46	0.69	
3 (ILF) SF	0.64	0.31	0.61	
			_	

Summary

- Steady-state thermal analyses for the assumed ex-vessel and in-vessel LOCA accidents have been performed to study the temperature behavior of HCPB blanket module.
- The thermal expansion behaviour of BSS in most severe accident has been evaluated as it is critical to design the attachment between blanket and VV.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

