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2. Methods

Global LPJ-GUESS dynamic vegetation model simulation (without
interactive N) driven by forcings for RCP 8.5 from 6 different global
climate models with Hurtt et al. (2011) land-cover data.
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1. Motivation

» The terrestrial biosphere
takes up about 1/3 of
anthropogenic CO, emissions.
»Crops and pasture cover
~1/3 global land area (2005).
» Global climate models
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from Hurtt et al. (2011).

4. Results
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5. Why 6. Conclusions
Increased emissions of CO, are tied to re-equilibration of soil carbon stocks to
changes in inputs (primarily harvest) and soil respiration rates. Most emissions Inclusion of key agricultural processes in a global
occur in the decades immediately following a land-use or management change. vegetation model increases land-use change emissions by
Components of land use emissions (1850-2012 accumulated fluxes, Pg C) up to 1 Pg C a_1 over 1850-2012
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»Representations of harvest/grazing and soil respiration rates have the
biggest potential to affect global terrestrial carbon uptake.
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»Management processes influencing crop productivity per se (e.g.
_ irrigation) are important for food supply, but had little influence on land
vegetation to carbon stock . C e
: : use change emissions. Crop productivity is not a key factor for the
agriculture over time sink capacity change |
conversion (input vs loss) E._ =93 global carbon cycle over periods of more than one year.
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