

HELOKA-HP thermal-hydraulic model validation and calibration

X. Jin, B.E. Ghidersa, A.F. Badea

Highlights

- Thermal-hydraulic model for the electrical heater in HELOKA-HP using ٠ the system code RELAP5-3D for the model validation and calibration.
- model validation using novel techniques for assimilating experimental data and the representative model parameters with the computational module BEST-EST.
- ٠ Successful use of this methodology for reducing the model uncertainties and provide a quantitative measure of the consistency between the experimental data and the model.
- First application of the methodology in the fusion area calibration of other HELOKA component models, e. g. economizer, cooler and circulator in future.

P2.168

RELAP simulation and relative sensitivities for the heater

- Use transient boundary conditions of the experimental data for the temperature, pressure, power and mass flow rate at the heater inlet.
- Selection of two temperature responses : the heater outlet temperature as R1 and the heating element cladding temperature as R2.
- 8 representative heater parameters having impact on the temperature responses: heat transfer coefficient (HTC), hydraulic diameter d_h, heated hydraulic diameters d_{h heat} for HS1 (heating element steel cladding) and HS2 (shell), wall thicknesses swall for HS1 and HS2, and heat transfer surface areas Asurf for HS1 and HS2.
- Use "brute-force" method to calculate local sensitivities of 8 model parameters by a small variation of ±3% from their nominal values.

Heater modeling

Experimental and simulated values and relative sensitivities for the system response R1

7.0

6.0

5.0

40 3.0

2.0

1.0 0.0 -1.0 -2.0 -3.0

-4.0

Temperature (°C)

Best-estimate consistent experimental data assimilation and model calibration

- The calibration of RELAP5-3D using HELOKA experiment is applied by means of best-estimate predictions following the assimilation of experimental data and simultaneous calibration of model parameters and responses based on a published comprehensive mathematical methodology.
- This methodology yields best-estimate values for parameters and predicted responses, as well as best-estimate reduced uncertainties for the predicted best-estimate parameters and responses.
- This methodology is technically implemented in the computational module BEST-EST, which is written under the ROOT platform for performing the experimental data assimilation and model calibration

Parameter	Nominal value	BEST-EST value	Nr.
HTC (W/m²K)	$1440.0 \pm 5.0\%$	$1384.11 \pm 4.987\%$	Par1
d _h P530 (m)	$0.414516 \pm 1.5\%$	$0.423739 \pm 1.419\%$	Par2
d _{h-heat} -HS1 (m)	$0.012 \pm 3.0\%$	$0.0125 \pm 3.0\%$	Par3
s _{wall1} -HS1 (m)	$0.001\pm4.0\%$	$0.0011244 \pm 3.900\%$	Par4
s _{wall2} -HS2 (m)	$0.032 \pm 4.0\%$	$0.031146 \pm 2.501\%$	Par5
d _{h-heat} -HS2 (m)	$0.444 \pm 3.0\%$	0.44344 ± 2.993%	Par6
A _{surf} -HS1 (m²)	$61.56 \pm 4.0\%$	81.9356 ± 3.210%	Par7
A _{surf} -HS2 (m²)	$0.38 \pm 4.0\%$	0.450025 ± 2.619%	Par8

b) Nominal and best-estimated system parameters with their corresponding errors

a) Experimental, nominal simulated and bestestimate standard deviations of the responses R1

time (s)

- a) The consistency indicator of the procedure (generalized χ^2) is 0.968 \rightarrow experimental and simulated data are not discrepant within their errors
- b) Uncertainty reduction for the best-estimate values, especially for the most sensitive parameters.
- the best-estimate parameters will be correlated (the non-zero off-diagonal elements). The square roots of the diagonal c) elements represent the best-estimate relative standard deviations in the BEST-EST column of the Table.
- The discrepancy of the response from the RELAP recalculation using the best-estimate values in the table with respect to the d) experimental values (green curve) is very close to the BEST-EST prediction. The discrepancy of the best-estimate and recomputed values is considerably better balanced ~0.0 than the initial simulated ones, before data assimilation (blue curve).

National Research Center of the Helmholtz Association

of the system parameters

KIT – University of the State of Baden-Wuerttemberg and 12th International Symposium on Fusion Nuclear Technology 14 – 18 September 2015, Jeju Island Korea

Sim-Exp

Recal-Exp

BEST-Exp