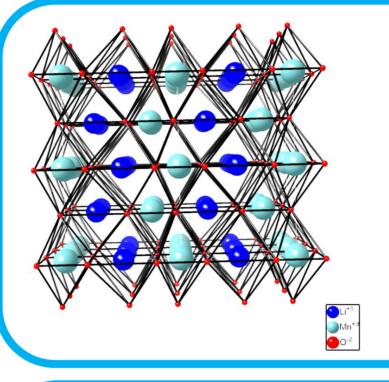


Karlsruhe Institute of Technology

Influence of substrate material and annealing process on phase and crack formation of LIB electrodes in the system Li-Mn-O

M. Strafela^a, J. Fischer^a, N. Arikan^{a,b}, H. Mozaffari-Jovein^b, H.J. Seifert^a, S. Ulrich^a

^a Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen ^b Furtwangen University (HFU), Faculty of Industrial Technologies, Campus Tuttlingen, Kronenstraße 16, 78532 Tuttlingen


In this work Li-Mn-O thin film cathodes have been deposited onto Silicon, oxidized Silicon and stainless steel substrates by non-reactive r.f. magnetron sputtering from a ceramic LiMn_2O_4 target. The pressure during sputtering was 7 Pa and r.f. power was 100 W. Film thickness was about 1.5 µm The as-deposited films were annealed in vacuum in a temperature range from 300 °C to 700 °C for one hour to induce crystallization. The microstructure of the films was characterized by X-ray diffraction (XRD) at room temperature. Surface characterization of the films was carried out by

scanning electron microscope (SEM).

LiMn₂O₄ - Target

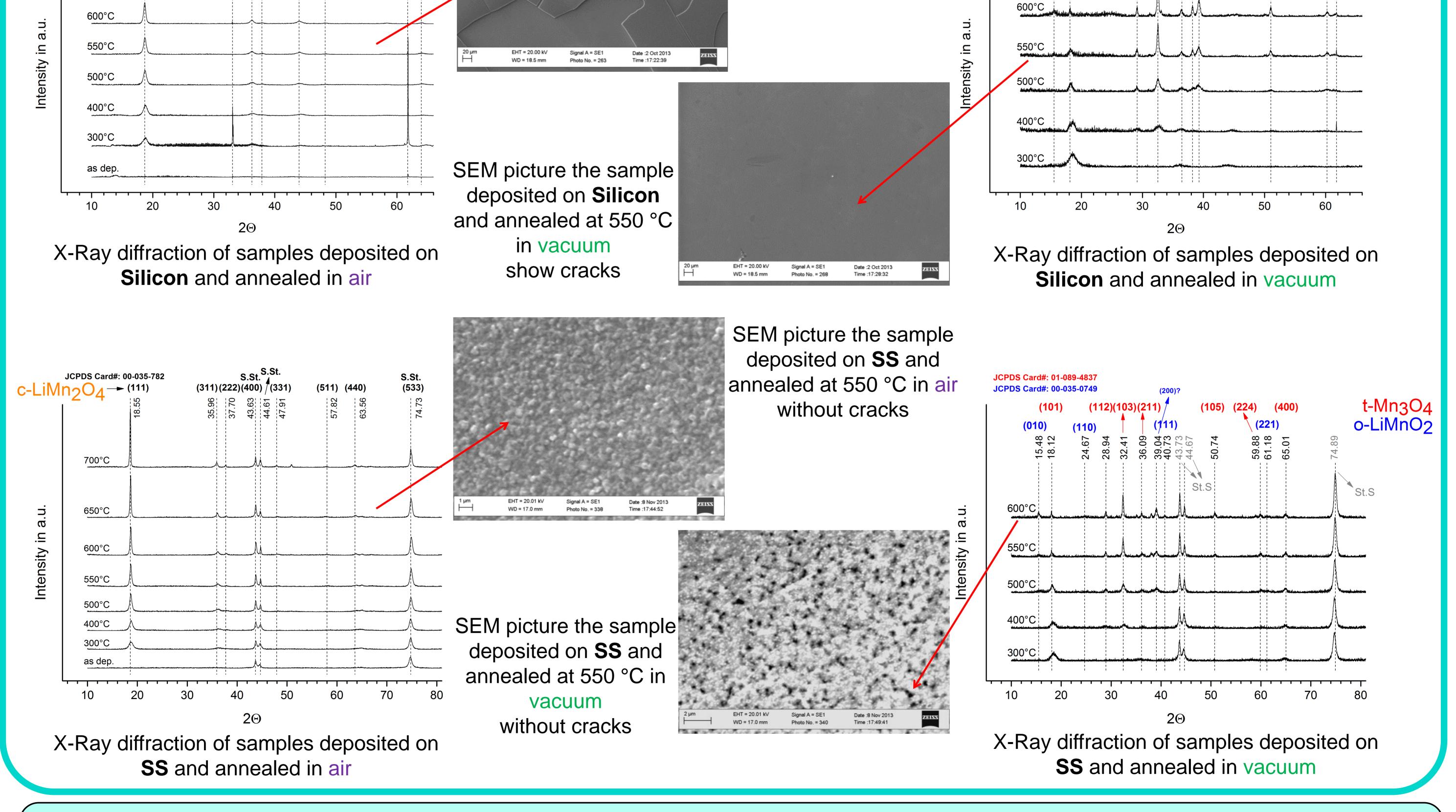
Selected Parameters:

Deposition: 7 Pa; 100 W r. f. power Film thickness: 1.5 µm Annealing: 300 – 700 °C (60 min): Air / Vacuum Substrates: Silicon / Stainless Steel (SS 30400)

Properties of o-LiMnO₂

Theoretical capacity: 285 mAh/g Practical capacity: 120 - 180 mAh/g Voltage vs. Li: 3.5 V - 4.5 V Space group: Pmnm LiO₆ and MnO₆ octahedral are arranged in corrugated layers

Properties of c-LiMn₂O₄


JCPDS JCPDS

Theoretical capacity: 148 mAh/g Practical capacity: 80 - 135 mAh/g Voltage vs. Li: 3.0 V - 4.3 V Space group: Fd3m Li and Mn atoms occupy octahedral and tetrahedral sites

c-LiN	JCPDS Card#: 00 /In2O4		Si (3	311)(222	2) (400)	(331)	Si (4	40)	\bigwedge	
		18.72	33.24	36.35 37.48	44.07	48.23	61.94	64.02		
	700°C									
	650°C									

SEM picture the sample deposited on **Silicon** and annealed at 550 °C in air show cracks

6 Card#: 01-089-4837						
Card#: 00-035-0749 (101)	(112)	(103)	(211) (004)	(105)	(224)	t-Mn3O₂
(010)		. ,	(200)		(131)	o-LiMnO
15.52 18.12	29.12	32.53	36.38 38.20 39.28	51.04	60.23 61.78	
	1		1 1 1	!		

We investigated the synthesis of Li-Mn-O thin film cathode materials by magnetron sputtering, as well as possible effects of heat treatment. It has been shown that the thin films were successfully deposited onto different substrates. During annealing in air implemented the formation of the cubic spinel phase. Different microstructures containing orthorhombic LiMnO₂ and tetragonal Mn₃O₄ phases were obtained by vacuum annealing. The second major finding was that the crack formation in the Li-Mn-O films was observed first at 400°C for Silicon and can be avoided on stainless steel.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

