

Karlsruhe Institute of Technology

Institut für Neutronenphysik und Reaktortechnik

LIMTECH Alliance

Phase changes in liquid metals for direct energy conversion Alkali Metal Thermal to Electric Converter (AMTEC)

Project: **B4**

N. Díez de los Ríos Ramos, A. Weisenburger, A. Onea, W. Hering, R. Stieglitz

Introduction / Motivation

The Alkali Metal Thermal to Electric Converter (AMTEC) is a concentration cell that works with liquid/vapor sodium at very high temperatures (~ 800 °C) and converts heat directly to electricity. AMTEC cells tested so far have shown an efficiency of ~ 20 %, low compared to the theoretical efficiency (~ 40 %). At KIT innovative materials and processes are being investigated, which establish promising solutions focused on the technological challenges of AMTEC.

PhD progress

- Design & construction of an AMTEC cell prototype \checkmark
- Design & construction of AMTEC Test Facility (ATEFA) \checkmark
- Evaluation of materials and processes for high tempe- \checkmark rature, corrosive and highly reactive environment
- Development of a control system for ATEFA \checkmark

Our long time perspective is the combination of advanced AMTEC cells and Concentrating Solar Power plants to achieve an increased overall efficiency and a better profit/cost ratio.

Set into operation of ATEFA

- Test of several electrode structures *G*.
- \mathcal{A} Evaluation and optimization of the cell performance

AMTEC operating principle

- Direct conversion of thermal energy into electricity
- Key component:
 - β"-Alumina Solid Electrolyte (BASE)
- Key process: Na-ionization (Δp across BASE) $Na \rightarrow Na^+ + e^-$
- Recombination of Na⁺ and e⁻ only at 3-phase boundaries: BASE – electrodes – Na
- Na condensation

Open issues

- Cell efficiency \rightarrow High thermal losses \rightarrow Loses in electrodes
- Contribution to long-term power degradation: \rightarrow BASE ~ 60 – 70 % \rightarrow Electrode ~ 20 %

AMTEC typical values:

Variable	AMTEC (KIT 1993)
V	0.4 – 1.2 V
1	0.5 – 1.5 A/cm²
Р	0.5 – 1.5 W/cm²
$\eta_{present}$	~ 20 %
T _{Na}	600 – 1000 °C
p_{Na}	10 Pa – 0.15 MPa

AMTEC TEst FAcility (ATEFA)

- Mass flow and pressure in Na-system controlled by Ar-system
- Pumpless design and Na open loop
- Safe oriented design (facility in-housed in a metallic box, fast emergency drainage in tanks, leakage tub...)
- 7 independent heat tracing systems

- 2 operating modes:
 - \rightarrow Completely automatic, normal operation (transient, steady state, measuring)
 - \rightarrow Combined manual & automatic (start, maintenance, drainage, shut down)
- Successfully tested valves and instrumentation
- Set into operation planed for October 2015

Conclusion

Based on the experiences in liquid metal and AMTEC technology at KIT, an AMTEC test cell and a test facility have been constructed in the frame of the Helmholtz Alliance LIMTECH and the Helmholtz Energy Material Characterization Platform (HEMCP). Evaluation of the cell structure as

Ni- sealing

well as analysis of materials and processes have been done. Preliminary tests for the ceramic coating and ceramic-metal welding were successfully finished. Furthermore, the software development of ATEFA control system is in an advanced stage. Set into operation is planed for October 2015.

TiC sputtered cathodes*

Key Publications	Cooperations
 N. Díez de los Ríos, A. Onea, S. Scherrer, A. Weisenburger, W. Hering, 5th International Youth Conference on Energy (2015) A. Onea, N. Díez de los Ríos, W. Hering, J.L. Palacios, Magnetohydrodynamics 51 (3), 495-507 (2015) A. Onea, N. Díez de los Ríos, J.L. Palacios, W. Hering, 9th Pamir International Conference (2014) N. Díez de los Ríos, A. Onea, W. Hering, R. Stieglitz, P. Moster, 3rd European Energy Conference (2013) 	 Projects A1, B1, B2 and B3 from LIMTECH Alliance * KIT Institutes IHM and IAM-AWP within HEMCP AMTEC Platform (HAC)

Preliminary tests*: ß"-Alumina – Nb joint (left), Mo cathode (right)

Further development of the project expected. Application for Helmholtz Postdoc Programme 2016 planned.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

AMTEC test cell