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Introduction

= A 3D slice model of the HCPB DEMO blanket has been set up to run thermo-mechanical analyses under steady state and DEMO transient
pulsed conditions.

= From these analyses critical time points have been identified in which the stresses are higher, and for each of these time points a complete
thermo-mechanical assessment has been conducted.

= The results have been assessed with respect to the design codes (mainly RCC-MR, completed by SDC-IC).
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Thermal and mechanical loads during normal operation have been considered here.
During pulsed operation, thermal loads follow the plasma pulse evolution, while mechanical loads remain constant.

Loads are listed as follows:

Primary plus secondary von Mises stress field on blanket structure and paths for linearization
- Internal pressure on cooling channels and in the manifold equal to 8 MPa, operating pressure of helium coolant loop;

- Internal pressure on surfaces in contact with the purge gas equal to 0.2 MPa, operating pressure of purge gas loop;

= Assessment of monotonic type damages
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Table 3. Values of the criteria against ratcheting damage mode (in [MPa])
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Conclusions

The blanket structure shows a global satisfying behavior for immediate plastic collapse and plastic instability damage modes, and thermal creep damage mode.
The blanket fails to fulfil the criteria to prevent immediate plastic flow localization damage mode in some regions.

Counter-actions proposed are: reducing the thermal gradients and increasing the thickness along the linearization paths.

FW shows a satisfying behavior against ratcheting and fatigue damage modes during plasma ramp-up and ramp-down phases.

Especially localized regions at the connection between massive structure or at pipe penetration showed unsatisfactory performances against ratcheting and fatigue damage modes; here design improvements are needed.
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