

NEWTON'S METHOD BASED SELF CALIBRATION FOR A 3D ULTRASOUND COMPUTER TOMOGRAPHY SYSTEM

Wei Yap Tan¹, Till Steiner², Nicole V. Ruiter¹

¹Institute for Data Processing and Electronics, KIT ²Development Ultrasonic Sensors, Pepperl+Fuchs GmbH, Germany

Background and Challenges

3D ultrasound computer tomography (3D USCT) at KIT:

- 2041 transducers in 157 transducer arrays (TAS) with 2.5 MHz resonance frequency
- Semi-ellipsoidal aperture for nearly isotropic 3D point spread function (PSF) in region of interest (ROI)
- 3 modalities in single measurement: reflectivity, SOS and attenuation

Challenges:

- Key to high quality image: accurate system calibration
- Time-of-flight (TOF) accuracy required $\lambda/4 = 0.152$ mm
- Limitation of simultaneous calibration: 10362 unknowns

Schematics of single TAS and the USCT aperture

Method

Calibration based on time-of-flight (TOF) measurements: $\|\mathbf{s}_{i} - \mathbf{r}_{i}\| = c \cdots (t \cdots - \tau - \tau)$

$$\|\mathbf{s}_{i} - \mathbf{t}_{j}\| - c_{ij} \cdot (c_{ij} - c_{s_{i}} - c_{r_{j}})$$

 $\mathbf{s}_i: i^{tn}$ emitter, $\mathbf{r}_i: j^{tn}$ receiver, $\mathbf{c}_{ij}:$ mean SOS t_{ii} : TOF, τ_{Si} : transmission delay, τ_{ri} : reception delay

- Sequential calibration according to error magnitudes
- Pre-filtering of TOF detection error
- Solving iteratively with Newton's method for unique solution satisfying \mathbf{x} : $f(\mathbf{x}) = 0$ by:

 $\mathbf{x}_{n+1} = \mathbf{x}_n - J^{-1}(\mathbf{x}_n) \cdot f(\mathbf{x}_n)$

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Possible Error Sources

Error Source	Error Ma
Machining accuracy	≤ 10 µm
Center deviation in each TAS	x, y ≤ 1 n
Radial offset of each TAS	≤ 10 µm
Rotation of each TAS	≤ 2°
Aperture material coefficient of thermal expansion (POM-C)	1.1·10 ⁻⁴ k
Electrical mechanical delay	≈ 1 µs <i>≘</i>
Temperature offset in TAS	≈ 3 °C ≦
Temperature error in TAS	≈ 1 °C ≦
Potential jitter of electronics	20 MHz =

1. Delay Calibration and Correction

Assumptions: SOS and position errors negligible $f\left(\tau_{s_{i}},\tau_{r_{j}}\right) = \left\|\mathbf{s}_{i}-\mathbf{r}_{j}\right\| - c_{ij}\cdot\left(t_{ij}-\tau_{s_{i}}-\tau_{r_{j}}\right) = 0$ $f(\tau_{s_i}) = |\tau_{s_i}| - \tau_{s_i} = 0, \quad f(\tau_{r_i}) = |\tau_{r_i}| - \tau_{r_i} = 0$ $\mathbf{x} = \left[\tau_{s_1}, \dots, \tau_{s_m}, \tau_{r_1}, \dots, \tau_{r_n}\right]^{T}$ Delay correction:

 $\hat{t}_{ij} = t_{ij} - \overline{(\tau_s + \tau_r)}$

2. Temperature Calibration

Assumptions: delays and position errors negligible $f\left(T_{s_i}, T_{r_j}\right) = \left\|\mathbf{s}_i - \mathbf{r}_j\right\| - \bar{c}_{ij}(T_{s_i}, T_{r_j}) \cdot \hat{t}_{ij} = 0$ $f(\mathbf{x}) = \overline{\mathbf{x}} - T_{cali} = 0$ $\mathbf{x} = \begin{bmatrix} T_{s_1}, \dots, T_{s_m}, T_{r_1}, \dots, T_{r_n} \end{bmatrix}^T$

3. Position Calibration

Assumptions: delays and SOS errors negligible $f(\mathbf{s}_i, \mathbf{r}_j) = \|\mathbf{s}_i - \mathbf{r}_j\| - c_{ij} \cdot \hat{t}_{ij} = 0$ $\mathbf{s}_{i} = (x_{s_{i}}, y_{s_{i}}, z_{s_{i}}), \quad \mathbf{r}_{j} = (x_{r_{j}}, y_{r_{j}}, z_{r_{j}})$ $\mathbf{x} = [\mathbf{s}_1, \dots, \mathbf{s}_m, \mathbf{r}_1, \dots, \mathbf{r}_n]^T$

Institute for Data Processing and Electronics

agnitudes

mm, $z \leq 300 \ \mu m$

K⁻¹ ≘ 28.6 µm K⁻¹

 $\hat{=}$ 1.5 mm at 25 °C $\hat{=}$ 1.5 mm at 25 °C $\hat{=}$ 0.5 mm at 25 °C $\widehat{=}$ 76 µm at 25 °C

Results

Simulated 3D USCT with top 114 TASs

	I	
Error Sources	Simulated Error	Calibration Error
Electrical delay	1.2 µs	0.175 µs
Temperature offset	-3 °C	-0.517 °C
Temperature error	1 °C	0.0031 °C
Position error	$\mu \leq 1 \text{ mm}$	$\mu=$ 16.29 μm
		$\sigma = 4.08 \ \mu m$

Application to real 3D USCT data **Error Sources Calibration Result**

Electrical delay	
Temperature offse	et
Temperature error	ſ
Position error	μ
	σ

Conclusions

- multiple error sources.
- Application to real data has residuum of $\approx \lambda/4$.
- needs further investigation.

Scan for a PDF copy Contact: wei.tan@kit.edu of the paper

Mean	Standard Deviation
1.2152 µs	0.012 µs
-2.5955 °C	0.076 °C
0.0662 °C	0.017 °C
141.53 µm	0.820 µm
285.84 µm	63.58 µm

• Simulations show ability to quantify and compensate

• Reason of larger residuum compared to simulation

Full width at half maximum analysis of a simulated point scatter

vww.kit.edu