

Karlsruhe Institute of Technology

#### **Motivation**

 $N_2O$  together with other nitrogen oxide species (NO, NO<sub>2</sub>) is formed in the engine and also in the catalytic converter by the reaction of  $N_2$  with adsorbed oxygen atoms. The destruction of these gases (DeNOx process) via reduction of  $NO_x$  to  $N_2$  is of great significance due to their environment and health impact. Especially for nitrous oxide (N<sub>2</sub>O) has been considered as the single most important ozonedepleting substance emitted and is expected to remain the largest throughout the 21st century. Specifically, NO and NO<sub>2</sub> have to be firstly converted into  $N_2O$  characterized by the high inertness, and then N<sub>2</sub>O further liberates oxygen to finally generate environmentally benign  $N_2$ , where the latter is the rate determining step of DeNOx process. Reducible oxides, such as  $TiO_2$ ,  $CeO_2$  and  $Fe_2O_3$ , have shown the reactivity to convert  $N_2O$  to  $N_2$  presumably at oxygen vacancy sites.

In this study, we monitor the conversion of  $N_2O$  to  $N_2$ over the model catalyst oxide support, namely CeO<sub>2</sub> by using photoemission spectroscopy (PES), near edge x-ray absorption fine structure spectroscopy (NEXAFS) and ultra-high-vacuum infra-red reflection absorption spectroscopy (UHV-IRRAS), which also enables us to determine the kinetics of this process.

# N<sub>2</sub>O-N<sub>2</sub> conversion on reduced ceria surface

Alexei Nefedov, Chengwu Yang, Fabian Bebensee, Christof Wöll

#### **Experimental**

The NEXAFS and PES measurements were carried out at the HE-SGM beamline at BESSY II. The CeO<sub>2</sub> single crystal surface was prepared by repeated cycles of sputtering with 1 keV Ar<sup>+</sup> and annealing at 800 K for 15 min in an O<sub>2</sub> atmosphere of  $1 \times 10^{-5}$  mbar for forming a stoichiometric surface, or alternately without O<sub>2</sub> to create a reduced one. For preparation of ceria powders, the sample was annealed stepwise from 800 K to 1000 K for 30 min.

NEXAFS measurements were performed at 120 K after desired Ce oxidation state as judged by PES. Exposure to 50 Langmuir N<sub>2</sub>O was achieved by backfilling the analysis chamber up to 2.6×10<sup>-7</sup> mbar for 250 seconds. Due to strong grounding effects, PES measurements cannot be performed at that low temperature. For that reason the temperature was elevated to a given set of temperatures. The VB data were gathered for evaluation of the ceria oxidation state.

IRRAS measurements were performed at 115-170K. Exposure of N<sub>2</sub>O was achieved by backfilling the IR chamber up to 2.6×10<sup>-9</sup> mbar with corresponding time to obtain necessary coverage. For UV-irradiation the lamp N-8 L (Herolab) with power of 8 W @ λ=365 nm was used. The irradiation takes place in IR chamber through quartz-window (directly at measurement position).

#### **NEXAFS/PES Endstation at HE-SGM Beamline**





## **NEXAFS/PES** experiments



N K-edge NEXAFS spectra after dosing 50 Langmuir N<sub>2</sub>O on a reduced CeO<sub>2</sub>(111) surface (left) at 120 K are depicted. Two X-ray resonances at 401.2 eV (Ce-O-N-N) and 404.8 eV (Ce-O-N-N) were observed. The signal decay for both photon energies is given in a time dependent plot (right). The measuring time between both signals in one spectrum was estimated to 1.5 min, between stacked spectra it was set to 3 min. Kinetic predictions should be valid under the consideration that both signals have equal peak areas on a simultaneous time recording scale.

Inset: Valence band spectra on partial reduced ceria and photorelated ceria reoxidation by N<sub>2</sub>O.



NEXAFS spectra were recorded in the N K-edge region after interaction with 50 L N<sub>2</sub>O on reduced ceria powder at an ambient temperature of 120 K. The corresponding kinetic profile is illustrating the signal decay over time (right). Expontential fitting reveals a first order kinetic for  $N_2O$  splitting on reduced ceria.

## **IRRAS** Experiments

## $N_2O$ on reduced $CeO_{2-x}(111)$









## **Proposed mechanism**

Schematic view on  $N_2O$  conversion for ceria and preparation conditions.

### Conclusions

In this work we presented the *in-situ* reaction monitoring of laughing gas (N<sub>2</sub>O) to N<sub>2</sub> on reduced ceria substrates by NEXAFS and IRRAS experiments. After deposition of 50 L N<sub>2</sub>O at 120 K, two apparent signals were observed for photon energies of 401,2 eV and 404,8 eV in NEXAFS spectra inside the N K-edge region on CeO<sub>2-x</sub>(111) and CeO<sub>2-x</sub> powder, respectively. For the single crystal surface the oxidation process could be directly followed by the shrink of the Ce4f shell signal in valence band photoemission spectra, which is a clear indication for replenishing the voids on reduced surfaces with atomar oxygen. Hence the chemical conversion from N<sub>2</sub>O to molecular nitrogen can be assumed. The nitrogen signal decay in NEXAFS occurs much more rapid than for single crystals, so the conversion seems to be more effective on powders for multilayer dosages due to much higher surface area. IRRAS data confirm NEXAFS results. After N<sub>2</sub>O adsorption on reduced CeO<sub>2</sub> surface, only one band at 2250 cm<sup>-1</sup> is observed, which can be described as a nitrogen-nitrogen asymmetric stretching vibration. After the temperature increase as well as after the UV irradiation the band intensity goes down. Comparison of grazing emission XP spectra of reduced CeO<sub>2</sub>(110) before and after N<sub>2</sub>O treatment indicates N<sub>2</sub>O donated oxygen atom to the oxygen vacancy and re-oxidized the reduced  $CeO_2(110)$ .



#### References

- [1] A. R. Babbin, D. Bianchi, A. Jayakumar, B. B. Ward, Science, 2015, 348, 6239.
- [2] D. R. Mullins, Surface Science Reports, 2015, 70, 42.
- [3] J. A. Rodriguez, *Environmental Catalysis*, **2005**, 211, Taylor & Francis Group.
- [4] G. Ceballos, H. Wende, K. Baberschke, D. Arvanitis, Surface Science, 2001, 482-485, 15.
- [5] C. N. Rusu, J. T. Yates Jr., Journal of Physical Chemistry B, 2001, 105, 2596.
- [6] C. Yang, L. Yin, F. Bebensee, M. Buchholz, H. Sezen, S. Heissler, J. Chen, A. Nefedov, H. Idriss, X. Gong,

C. Wöll, Physical Chemistry Chemical Physics, 2014, 16, 24165.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

