

Modification of Graphitization Degree of Carbon Based Electrodes in Vanadium Redox Flow Batteries

Joachim Langner¹, Julia Melke², Ditty Dixon¹, Frieder Scheiba¹, Helmut Ehrenberg¹, Christina Roth²

¹Karlsruhe Institute for Technology (KIT), Institute for Applied Materials (IAM), 76344 Eggenstein-Leopoldshafen, Germany

²Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, 14195 Berlin, Germany

- Redox-flow batteries (RFB) are a potential energy storage technology for electric grid integration of renewables.
- In RFB capacity (electrolyte volume) and power (stack size) can be scaled independently.
- Vanadium redox flow batteries (VRFB) offer the additional advantage that cross-contamination of the electrolyte active species by diffusion through the membrane is not a problem.
- In this work we investigated the electrode material with the focus on the surface structure of pristine (P) and thermally oxidized (T) PAN-based fibers. For this purpose, XPS and NEXAFS were used.
- The PAN-based felts were graphitized at 1500 and 2000 °C under argon atmosphere. Thermal treatment was carried out under air at 500 °C for 10 hours to improve the reversibility for the V^{4+/5+} reaction.

NEXAFS

Raman-Spectroscopy

- Near Edge X-Ray Absorption Fine Structure (NEXAFS) in total electron yield setup has an information depth of 15 Å (XPS ~50 Å).
- sp²-carbon content of the pristine samples (upper right figure) is very low.
- This is due to a amorphous/aliphatic carbon layer on the surface which is removed by the heat treatment (lower left figure).
- Remarkable is the close resemblance between the fiber surfaces in terms of sp²-carbon content.

X-Ray Photoelectron Spectroscopy

- Besides carbon XPS measurements also show the presence of oxygen and traces of nitrogen. G2000 contains a lower fraction of heteroatoms.
- A difference in graphitization degree is also clearly seen between G1500 and G2000.
- Thermal oxidation leads to a higher oxygen content and the graphite fraction is reduced.
 - Both samples take up an additional 3 at% of oxygen.

Cyclic Voltammetry

- Cyclic voltammetry was performed with 5 mV/s in 0.1 M VOSO₄ and 2 M H_2SO_4 in a three electrode setup.
- Both pristine samples do not show a reduction peak of V⁵⁺ in the potential window. It appears around -0.2 V vs. Ag/AgCI.
- Thermal treatment dramatically increases the reversibility and activity of the $V^{4+/5+}$ redox reaction as shown in many other publications.
- G1500 pristine sample performs with a higher reversibility compared to G2000 T although they have the same amount of oxygen surface groups.

www.kit.edu

Conclusions

Acknowledgment

The financial support of the BMBF within the project "Flow 3D" (03EK3011D) is gratefully acknowledged. Technology is Freudenberg New acknowledged for providing stabilized PAN-based felt.

Federal Ministry of Education and Research Freudenberg

SPONSORED BY THE

- Graphitization degree of G2000 sample is much higher as for the G1500 (Raman and XPS). However, NEXAFS measurement show that, the surface of G1500 and G2000 are very similar in terms of sp2-carbon for the pristine and treated sample.
 - This is neither shown by Raman nor XPS as they are not surface sensitive enough.
- NEXAFS reveals a very thin amorphous carbon layer on the pristine fibers. The origin could be residuals from graphitization process. The surface cleaning from the amorphous residuals by thermal treatment increases the activity of both materials.
- However although both thermal treated sample G1500 T and G2000 T have a similar sp²-carbon content at the surface they show a different electrochemical behavior.
 - This difference in the activity correlates with the amount of oxygen functional groups, as revealed by NEXAFS and XPS.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

ENERGIESPEICHER

Forschungsinitiative der Bundesregierung