Simulation of the particle flow in a twin-screw mixing reactor for fast pyrolysis of the biomass residues

Authors: Robert Grandl, Axel Funke, Nicolaus Dahmen, Jörg Sauer

Motivation
The twin-screw mixing reactor, used for fast pyrolysis of lignocellulosic material at the PYTHON plant, proves to be a robust and effective reactor for fast pyrolysis of biomass. Regardless the positive operation experience, there is a little systematic knowledge about design criteria for this kind of reactor. At this point, a numerical approach to simulate the particle behavior (Discrete Element Model) and the fluid behavior (Computational Fluid Dynamics) comes in hand.

Computational Fluid Dynamics (CFD)

Introduction
Computational Fluid Dynamics (CFD) is a commonly used technology for the simulation of fluid dynamics. One of the many software packages at this field is the open source program OpenFoam®. This software package is known for its exceptional solvers and boundary conditions adaptability.

Previous work
Fluid flow in an empty reactor

The simulation was done, at fixed state of the reactor. For this simulation, nitrogen was injected at the inlet points reached with red, at the heat carrier inlet and outlet as well as the biomass inlet. Pyrolysis gas was created with a constant velocity, a

Conclusions
• It is possible to simulate the fluid phase of a complex geometry using OpenFoam®.

Ongoing activities
• Using immersed boundary methods, the movement of the twin-screws will be implemented.
• Implementation of a thermodynamic solver for improving the accuracy of the results.
• Determining the pyrolysis conversion rate of biomass.

Discrete Element Model (DEM)

Introduction
DEM is a method which uses Newton’s mechanical laws to simulate the solid particle kinetic of a great number of spherical particles. The program which is used for DEM-Simulations is LIGGGHTS®-Public, an open source tool developed by DCS®-Computing.

Previous work
Determination of values

Verification of values

Simulating the mixing behavior

Conclusions
• It is possible to simulate the mixing behavior with high accuracy.
• The residence time is strongly dependent on particle-particle, particle-wall friction and rolling friction.
• The simulation shows some dead zones, which indicates that there is still a potential to improve the reactor design.
• DEM simulation can be used for validating a new reactor design and screw geometries.

Ongoing activities
• Improvement of simulation quality by the determination of biomass-related friction as well as rolling friction.
• Improvement of the LIGGGHTS® results by using rigid bodies for simulating non spherical particles.

CFDEM - Approach

The open source program LIGGGHTS® was developed with the perspective to couple it with OpenFoam®, which means having both advantages of DEM and CFD. This can be done with the package CFDEM®-Coupling, which is developed by DCS-Computing.

Ongoing activities
• Verification of the CFDEM-Simulation.
• Implementing the CFDEM® approach in the immersed boundary – multiphase solver.

Table: Simulated residence time with different operating conditions

<table>
<thead>
<tr>
<th>Operating Conditions</th>
<th>Residence Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>p w rf = 0.12</td>
<td>7.2 s</td>
</tr>
<tr>
<td>2 Hz</td>
<td>7.2 s</td>
</tr>
<tr>
<td>3 Hz</td>
<td>12.4 s</td>
</tr>
<tr>
<td>4 Hz</td>
<td>17.8 s</td>
</tr>
</tbody>
</table>


Kontakt:
Robert Grandl
robert.grandl@kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu